Studying the effect of tomato pomace incorporation on physicochemical, nutritional and storage characteristics of corn-based extrudates using response surface approach

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Abida Jabeen ◽  
Haroon Naik ◽  
Nusrat Jan ◽  
Syed Zameer Hussain ◽  
Tawheed Amin ◽  
...  

PurposeThe present research was envisaged with an aim to optimize the system and the product responses for the development of tomato pomace-incorporated corn-based extrudates employing central composite rotatable design and determine its proximate, lycopene, consumer acceptability and storage studies.Design/methodology/approachLycopene-rich extrudates were developed from corn flour blended with different levels of tomato pomace. The independent extrusion variables, namely, feed composition (95:5 to 75:25), feed moisture (12–20%), screw speed (200–600 rpm) and barrel temperature (125–185 °C), were studied to determine their influence on dependent variables, namely, specific mechanical energy, hardness, water solubility index, lateral expansion, water absorption index, bulk density and color.FindingsAll of the quality parameters were significantly (p < 0.05) influenced by independent variables. The regression models obtained for all the responses showed high coefficients of determination (R2 = 0.85–0.95). The optimum conditions for the development of tomato pomace-incorporated corn-based extrudates were feed composition (90:10), feed moisture (14%), screw speed (300 rpm) and barrel temperature (170 °C). The moisture, fat and carbohydrate contents of the extrudates were significantly reduced, whereas protein, ash and fiber were significantly (p < 0.05) enhanced after the incorporation of tomato pomace. Aluminum laminates were found to be the suitable packaging materials for extrudates for a period of 120 days in comparison to high-density polyethylene packages.Originality/valueAs far as the authors could possibly know, scanty literature exists wherein the tomato pomace has been utilized for the development of lycopene-rich corn-based extruded snacks. Such extrudates with significantly higher fiber and lycopene contents than corn flour will serve as a suitable alternative for the development of shelf-stable ready-to-eat extruded snacks.

2019 ◽  
Author(s):  
Chetan Sharma ◽  
Baljit Singh ◽  
Syed Zameer Hussain ◽  
Savita Sharma

PR 106 and SML 668 cultivars of rice and mung bean respectively, were studied for their potential to serve as a nutritious snack with improved protein quality and quantity. The effect of extrusion conditions, including feed moisture content (14–18%), screw speed (400–550 rpm) and barrel temperature (130–170°C) on the physicochemical properties (bulk density, water absorption index (WAI), water solubility index (WSI) and hardness) was investigated. The replacement of rice flour at 30% level with mung bean flour for making extruded snacks was evaluated. Pasting temperature increased (84–93 °C) while peak viscosity (2768–408 cP), hold viscosity (2018–369 cP), breakdown (750–39 cP), setback (2697–622 cP) and final viscosity (4715–991 cP) decreased with increasing mung bean flour addition. Increasing feed moisture lowered the specific mechanical energy (SME), WAI and WSI of extrudates whereas increased bulk density and hardness. Higher screw speed had linear positive effect on SME of extruder and negative linear effect on WAI. Positive curvilinear quadratic effect of screw speed was also observed on WSI and density. Higher barrel temperature linearly decreased the SME, density and hardness of extrudates. Developed extrusion cooked rice-mung bean snacks with increased protein content and improved protein quality along with higher dietary fiber and minerals have good potential in effectively delivering the nutrition to the population.


2019 ◽  
Vol 122 (1) ◽  
pp. 227-241 ◽  
Author(s):  
Mushtaq Beigh ◽  
Syed Zameer Hussain ◽  
Tahiya Qadri ◽  
Bazila Naseer ◽  
Tariq Raja ◽  
...  

Purpose Keeping in view the diabetes status that has affected about 415 million people globally and is the leading cause of death in many countries along with therising demand for low Glycemic Index (GI) foods, the purpose of this paper is to optimize the extrusion process for the development of low GI snacks from underutilized crops like water chestnut and barley. Design/methodology/approach The extrusion parameters (screw speed and barrel temperature), feed moisture and water chestnut flour, barley flour proportion, were varied and their effects on system and product responses (specific mechanical energy, water absorption index, water solubility index, bulk density, expansion ratio and breaking strength) were studied. Findings All the system and product responses were significantly affected by independent variables. Response surface and regression models were established to determine the responses as function of process variables. Models obtained were highly significant with high coefficient of determination (R2=0.88). The optimum processing conditions obtained by numerical optimization for the development of snacks were 90°C barrel temperature, 300 rpm screw speed, 14 per cent feed moisture and WCF-to-BF ratio as 90:10. Shelf life studies confirmed that the developed snacks can be safely stored in HDPE bags for a period of six months under ambient conditions. Originality/value Water chestnut and barley flour did not blend till date for extrusion cooking. Such snacks shall be a viable food option for diabetic people and can act as laxative due to high fibre and β-glucan content from barley.


2014 ◽  
Vol 10 (3) ◽  
pp. 503-510 ◽  
Author(s):  
Gurkirat Kaur ◽  
Savita Sharma ◽  
Baljit Singh

Abstract Rice flour, wheat flour and flour in combination (rice:wheat::50:50) were used to prepare modified flour using co-rotating twin screw extruder. The effects of barrel temperature, feed moisture and screw speed on product responses (specific mechanical energy[SME], expansion ratio and bulk density) were studied using response surface methodology. Extrusion variables were barrel temperature (125, 150 and 175°C), moisture content (14, 16 and 18%) and screw speed (300, 400 and 500 rpm). Expansion ratio was directly affected by barrel temperature, whereas increase in temperature decreased SME and bulk density. Feed moisture had positive effect on bulk density only, i.e. it increased with increase in moisture. Increase in screw speed was directly related to SME and expansion ratio. The higher R2 values showed that the model developed for the response variables appeared adequate for predictive purposes.


2003 ◽  
Vol 9 (2) ◽  
pp. 101-114 ◽  
Author(s):  
H. Doğan ◽  
M. V. Karwe

Response surface methodology (RSM) was used to analyse the effect of temperature, screw speed, and feed moisture content on physicochemical properties of quinoa extrudates. A three-level, three-variable, Box-Behnken design of experiments was used. The experiments were run at 16-24% feed moisture content, 130-170°C temperature, and 250-500 rpm screw speed with a fixed feed rate of 300 g/min. Second order polynomials were used to model the extruder response and extrudate properties as a function of process variables. Responses were most affected by changes in feed moisture content and temperature, and to a lesser extent by screw speed. Calculated specific mechanical energy (SME) values ranged between 170-402 kJ/kg which were lower than those observed for other cereals, most likely due to high (7.2%) fat content of quinoa. High levels of feed moisture alone, and in combination with high temperature, resulted in poor expansion. The best product, characterised by maximum expansion, minimum density, high degree of gelatinization and low water solubility index, was obtained at 16% feed moisture content, 130°C die temperature, and 375 rpm screw speed, which corresponds to high SME input. It was demonstrated that the pseudo-cereal quinoa can be used to make novel, healthy, extruded, snack-type food products.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
The-Thiri Maung ◽  
Bon-Yeob Gu ◽  
Gi-Hyung Ryu

AbstractTo investigate the effect of process parameters during high-moisture extrusion on system parameter (specific mechanical energy, SME) and product physical properties, blend of soy protein isolate, wheat gluten, and corn starch (50:40:10 w/w) was extruded using co-rotating twin screw extruder equipped with cooling die at 55 and 65% feed moisture, 150 and 170 °C barrel temperature, 150 and 200 rpm screw speed. The hardness and chewiness of products increased as all the extrusion process parameters became low. Among the tested range of process parameters in this study, a combination of high moisture (65%), high barrel temperature (170 °C), and low screw speed (150 rpm) generated the low SME input (less energy consumption) with high texturization degree of meat analogs. Layer and fibrous structure formation of the samples were influenced by variations in process parameters, primarily feed moisture and barrel temperature.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 693
Author(s):  
Abdallah Bouasla ◽  
Agnieszka Wójtowicz

In the present study, we applied extrusion-cooking to polished rice flour so as to prepare gluten-free pasta. The aim of the work was to investigate the effect of feed moisture (28, 30 and 32%) and screw speed (60, 80 and 100 rpm) on selected rice pasta quality attributes (water absorption, cooking loss, firmness, stickiness and microstructure) and extrusion response (specific mechanical energy). Our results showed that feed moisture significantly affected all tested quality attributes of the rice pasta, while screw speed exhibited a significant effect on all quality attributes except cooking time and stickiness. Moreover, raising the feed moisture increased the cooking time, water absorption, cooking loss, hardness and stickiness, but decreased the firmness at high screw speed. In addition, increasing the screw speed enhanced the cooking loss and hardness, but diminished the water absorption and firmness of pasta with low feed moisture. Rice pasta prepared with 30% moisture content and at 80 rpm showed adequate quality, as confirmed by a firm texture and low cooking loss and stickiness. Microstructure analysis showed a compact and dense internal structure of the dry pasta, and the surface was smooth and even when at least 30% moisture was applied at 80 rpm screw speed during processing.


2021 ◽  
Vol 10 (2) ◽  
pp. 296-310
Author(s):  
Anuj Saklani ◽  
Ravinder Kaushik ◽  
Krishan Kumar

The present study was conducted to develop non-cereal starch extruded products. The effects of feed moisture (15-21%), temperature (130-170 °C) and screw speed (120-160 rpm) were evaluated on the physical and functional properties of extruded snacks using response surface methodology. Feed moisture and screw speed increased the bulk density and hardness of extruded snacks. Significant decreases in water absorption index and increases in water solubility index were observed with increases in extrusion temperature. The best conditions were determined by numerical optimization. The optimized value for non-cereal snacks for feed moisture is 18.22%, temperature 155.96 °C, screw speed 142.75 rpm and, desirability is 0.75. Verification of results showed decent agreement between the responses of experimental values at certain optimum conditions and the predicted values.


Author(s):  
Yadav KC ◽  
Ranjit Rajbanshi ◽  
Prabesh Bhattarai ◽  
Pramesh K. Dhungana ◽  
Dilip Subba

The effects of incorporation of finger millet (Eleusine coracana L.) flour and extrusion conditions on physico-chemical characteristics of corn grit- rice grit-chickpea flour blend expanded extrudates were studied. Response surface methodology was used to study the effects of level of incorporation of millet flour in feed composition (5 to 25 %), feed moisture (12-16%), screw speed (1000-1400 rpm) and extrusion temperature (80–120°C). Single screw extruder was used for the experiments. The level of millet flour incorporation had significant effect on water solubility index (p<0.05), water absorption index (p<0.05) and starch digestibility (p<0.001). Feed moisture had significant effect on water solubility index (p<0.001) and water absorption index (p<0.05). Extrusion temperature had significant effect on water solubility index (p<0.001), water absorption index (p<0.05) and starch digestibility (p<0.05). Screw speed had significant effect on water solubility index (p<0.001) and water absorption index (p<0.05). Numerical optimization study predicted 106.8 °C of extrusion temperature, 1253 rpm of screw speed, 12.67 % of feed moisture, and 22.8 % of millet flour as optimum conditions to produce acceptable extrudates from the feed composite containing millet flour.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Tashooq Bhat ◽  
Syed Zameer Hussain ◽  
Bazila Naseer ◽  
Abdul Hameed Rather ◽  
Shakeel Ahmad Mir

PurposeSnack industry is one of the fastest growing food sectors globally, and people are nowadays conscious about intake of healthy snacks on regular basis. There is enormous variety of ready-to-snacks available in the market. Brown rice though highly nutritious in comparison to polished rice is consumed meagerly by masses. Each raw material/ingredient used in extrusion cooking requires specific control of processing variables to meet acceptable product characteristics and consumer demands, which in turn necessitates the need to optimize the conditions for development of brown-rice-based snacks. The aim of this study was to optimize the extrusion cooking conditions for development of brown-rice-based extrudates.Design/methodology/approachExtrusion conditions were optimized through design expert using central composite rotatable design (CCRD) experimental design. The effect of feed moisture (10–22%), screw speed (215–385 rpm) and barrel temperature (95–160 °C) on specific mechanical energy (SME), bulk density (BD), water absorption index (WAI), water solubility index (WSI), expansion ratio (ER), breaking strength (BS) and instrumental color (L*, a*, b*) was evaluated.FindingsAll the system and product responses were significantly (p < 0.01) affected by independent variables. Regression models obtained were highly significant with high coefficient of determination (R2 = 0.992). The optimum extrusion conditions obtained by numerical optimization for development of snacks were moisture content of 12%, screw speed of 350 rpm and temperature of 133 °C. The vitamin B1 content of brown-rice-based snacks was 0.45 mg/100 (50% of RDA) whereas no vitamin B1 was detected in white-rice-based snacks used as control.Practical implicationsThe developed snacks contain 0.45 mg/100 g of vitamin B1. If a person on an average consumes 150 g of snacks in a day, 50% of RDA (1.2 mg/day) for vitamin B1 can be sufficed. Therefore, developed snacks can prove to be a viable vehicle to reduce the vitamin B1 deficiency burden among the target population. Large-scale production and consumption of such type of snacks could improve the nutritional status of vitamin B1 deficient people. Furthermore, it can also provide a good opportunity for snack industry to develop nutritious snacks through utilization of brown rice.Originality/valueBrown rice flour contains nutrients such as iron, calcium, zinc, sodium and vitamin B1 in appreciable portions and was thus explored for development of nutritious snacks. Moreover, developed snacks recorded an overall acceptability of 4.70 out of 5, which depicts it is acceptable for mass production and consumption.


2020 ◽  
Vol 16 (8) ◽  
Author(s):  
Jiabao Cao ◽  
Baoxin Lu ◽  
Dongjie Zhang ◽  
Longkui Cao ◽  
Xia Wang ◽  
...  

AbstractThe present study was carried out to produce a high quality puffed infant rice cereal from rice and mung bean through extrusion technology. Experiments were designed using 3 independent variables (i. e. 14–18% feed moisture, 400–550 r/min screw speed and 125–175 °C barrel temperature) and 3 response variables (i. e. bulk density, water solubility index and degree of gelatinisation) at five different levels of central composite rotatable design (CCRD). The results of optimization demonstrated that 14% feed moisture, 400 r/min screw speed and 175 °C barrel temperature could generate rice-mungbean extrudates with desirable functional properties. The selected extrudate samples were further examined using scanning electron microscope (SEM), rapid viscosity analyzer (RVA), Fourier transform infrared spectrometer (FTIR), X-ray diffraction (XRD) analysis, in vitro digestibility and fundamental nutrient analysis. Notably, the initial oval-shaped particle structure of starch in the raw materials disappeared, the surface debris and roughness increased, and the density decreased. The time required for the gelatinization of puffed infant rice cereal was the shortest, which was in agreement with the positioning of ready-to-eat weaning food for infants. Moreover, the puffed infant rice cereal displayed higher peak viscosity and breakdown value, smaller retrogradation value and greater top taste value compared to the commercial infant rice cereal. Besides maintaining the initial characteristic peak of starch, the puffed infant rice cereal demonstrated characteristic absorption peaks of COO- in the vicinity of 1546 cm−1 and 1437 cm−1, indicating the formation of carboxylate during extrusion. In addition, the puffed infant rice cereal exhibited firm diffraction peaks at the diffraction angles of 7.4°, 12.5° and 20.5°, indicating that a certain amount of starch changed from type A to type V. Furthermore, the digestive rate of puffed infant rice cereal was higher than that of commercial infant cereal (90.21 versus 86.96%, respectively; p < 0.05). Altogether, our findings reveal that the developed puffed infant rice cereal meets the standards set by the Codex Alimentarius Commission (CAC; 74-1981).


Sign in / Sign up

Export Citation Format

Share Document