Multi-parameter mathematical model for determination of PC cluster total harmonic distortion of input current

Author(s):  
Sasa Mujovic ◽  
Slobodan Djukanovic ◽  
Vladan Radulovic ◽  
Vladimir A. Katic

Purpose – Low power devices with switched-mode power supply represent harmonic generating apparatus in widespread use nowadays. The influence of personal computers (PCs), which affect the supply voltage, is considered. Harmonic level due to simultaneous PC operation is quantified by the total harmonic distortion of input current (THD I ). The purpose of this paper is to propose a multi-parameter mathematical model for the THD I calculation. The model is convenient for practical engineering application. Design/methodology/approach – The model is derived using the measured and simulated data. The model coefficients are obtained in the least squares sense. Findings – Mathematical modeling of THD I is the least expensive and the most convenient solution for engineering application. The models proposed in the literature have many drawbacks, which motivated the authors to develop a more comprehensive solution. Grid stiffness, capacitance of PC power supply unit and PC cluster size represent the major parameters that affect THD I , and as such they are taken into account in the proposed model. The influence of other existing parameters from both line and load side is also discussed and the reasons for their omitting from the model are explained. The model considers various PC configurations within the cluster and it enables the THD I calculation for an arbitrary PC cluster size. Practical implications – Due to its comprehensiveness and mathematical simplicity, the model is suitable for practical use, and its accuracy is verified through conducted measurements presented in the paper. Originality/value – The proposed model is more comprehensive than the existing ones, and it overcomes their shortcomings. The THD I calculation is simplified to the level of applying basic arithmetic operations only, without jeopardizing the accuracy. The validity of the model is supported by additional measurements carried out in sites characterized by grid conditions quite different from that used for model developing.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Peiman Ghasemi ◽  
Fariba Goodarzian ◽  
Angappa Gunasekaran ◽  
Ajith Abraham

PurposeThis paper proposed a bi-level mathematical model for location, routing and allocation of medical centers to distribution depots during the COVID-19 pandemic outbreak. The developed model has two players including interdictor (COVID-19) and fortifier (government). Accordingly, the aim of the first player (COVID-19) is to maximize system costs and causing further damage to the system. The goal of the second player (government) is to minimize the costs of location, routing and allocation due to budget limitations.Design/methodology/approachThe approach of evolutionary games with environmental feedbacks was used to develop the proposed model. Moreover, the game continues until the desired demand is satisfied. The Lagrangian relaxation method was applied to solve the proposed model.FindingsEmpirical results illustrate that with increasing demand, the values of the objective functions of the interdictor and fortifier models have increased. Also, with the raising fixed cost of the established depot, the values of the objective functions of the interdictor and fortifier models have raised. In this regard, the number of established depots in the second scenario (COVID-19 wave) is more than the first scenario (normal COVID-19 conditions).Research limitations/implicationsThe results of the current research can be useful for hospitals, governments, Disaster Relief Organization, Red Crescent, the Ministry of Health, etc. One of the limitations of the research is the lack of access to accurate information about transportation costs. Moreover, in this study, only the information of drivers and experts about transportation costs has been considered. In order to implement the presented solution approach for the real case study, high RAM and CPU hardware facilities and software facilities are required, which are the limitations of the proposed paper.Originality/valueThe main contributions of the current research are considering evolutionary games with environmental feedbacks during the COVID-19 pandemic outbreak and location, routing and allocation of the medical centers to the distribution depots during the COVID-19 outbreak. A real case study is illustrated, where the Lagrangian relaxation method is employed to solve the problem.


2021 ◽  
Vol 2 (2) ◽  
pp. 29-35
Author(s):  
Dmitry A. Sorokin ◽  
◽  
Sergey I. Volskiy ◽  
Jaroslav Dragoun ◽  
◽  
...  

The paper suggests a control system of a three-phase power factor corrector. The study of the control system operation is carried out and the expressions for calculating the permissible values of error amplifier factors are obtained. The influence of the error amplifier parameters on phase current quality is investigated. The dependence of total harmonic distortion input current on a combination of error amplifier parameters is obtained at a given value of power factor. The conditions under which the total harmonic distortion input current has the minimum value are found out. This article is of interest to power electronics engineers, who are aimed at developing a three-phase power factor corrector.


Circuit World ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Rohollah Abdollahi

Purpose The purpose of this paper is to provide a T autotransformer based 12-pulse rectifier with passive harmonic reduction in more electric aircraft applications. The T autotransformer uses only two main windings which result in volume, space, size, weight and cost savings. Also, the proposed unconventional inter-phase transformer (UIPT) with a lower kVA rating (about 2.6% of the load power) compared to the conventional inter-phase transformer results in a more harmonic reduction. Design/methodology/approach To increase rating and reduce the cost and complexity of a multi-pulse rectifier, it is well known that the pulse number must be increased. In some practical cases, a 12-pulse rectifier (12PR) is suggested as a good solution considering its simple structure and low weight. But the 12PR cannot technically meet the standards of harmonic distortion requirements for some industrial applications, and therefore, they must be used with output filters. In this paper, a 12PR is suggested, which consists of a T autotransformer 12PR and a passive harmonic reduction (PHR) based on the UIPT at direct current (DC) link. Findings To show the advantage of this new combination over other solutions, simulation results are used, and then, a prototype is implemented to evaluate and verify the simulation results. The simulation and experimental test results show that the input current total harmonic distortion (THD) of the suggested 12PR with a PHR based on UIPT is less than 5%, which meets the IEEE 519 requirements. Also, it is shown that in comparison with other solutions, it is cost effective, and at the same time, its power factor is near unity, and its rating is 29.92% of the load rating. Therefore, it is obvious that the proposed rectifier is a practical solution for more electric aircrafts. Originality/value The contributions of this paper are summarized as follows. The suggested design uses a retrofit T autotransformer, which meets all technical constraints, and in comparison, with other options, has less rating, weight, volume and cost. In the suggested rectifier, a PHR based on UIPT at its dc link of 12PR is used, which has good technical capabilities and lower ratings. In the PHR based on UIPT, an IPT is used, which has an additional secondary winding and four diodes. This solution leads to a reduction in input current THD and conduction losses of diodes. In full load conditions, the input line current THD and power factor are 4% and 0.99, respectively. The THD is less than 5%, which satisfies IEEE-519 and DO-160G requirements.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Masoud Rabbani ◽  
Soroush Aghamohamadi Bosjin ◽  
Neda Manavizadeh ◽  
Hamed Farrokhi-Asl

Purpose This paper aims to present a novel bi-objective mathematical model for a production-inventory system under uncertainty. Design/methodology/approach This paper addresses agile and lean manufacturing concepts alongside with green production methods to design an integrated capacitated lot sizing problem (CLSP). From a methodological perspective, the problem is solved in three phases. In the first step, an FM/M/C queuing system is used to minimize the number of customers waited to receive their orders. In the second step, an effective approach is applied to deal with the fuzzy bi-objective model and finally, a hybrid metaheuristic algorithm is used to solve the problem. Findings Some numerical test problems and sensitivity analyzes are conducted to measure the efficiency of the proposed model and the solution method. The results validate the model and the performance of the solution method compared to Gams results in small size test problems and prove the superiority of the hybrid algorithm in comparison with the other well-known metaheuristic algorithms in large size test problems. Originality/value This paper presents a novel bi-objective mathematical model for a CLSP under uncertainty. The proposed model is conducted on a practical case and several sensitivity analysis are conducted to assess the behavior of the model. Using a queue system, this problem aims to reduce the items waited in the queue to receive service. Two objective functions are considered to maximize the profit and minimize the negative environmental effects. In this regard, the second objective function aims to reduce the amount of emitted carbon.


Author(s):  
Jiajia Chen ◽  
Yuhan Ma ◽  
Shiyou Yang

Purpose The purpose of this paper is to provide an accurate model and method to simulate the transient performances of an insulated gate bipolar transistor (IGBT) in an arbitrary free-carrier injection condition. Design/methodology/approach A numerical model and method for solving the physics-based model, an ambipolar diffusion equation-based model, of an IGBT is proposed. Findings The results of the proposed model are very close to the tested ones. Originality/value A mathematical model for an IGBT considering all free-carrier injection conditions is introduced, and a numerical solution methodology is proposed.


Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 137-142
Author(s):  
Roman Sikora ◽  
Przemysław Markiewicz ◽  
Wiesława Pabjańczyk

Abstract The power systems usually include a number of nonlinear receivers. Nonlinear receivers are the source of disturbances generated to the power system in the form of higher harmonics. The level of these disturbances describes the total harmonic distortion coefficient THD. Its value depends on many factors. One of them are the deformation and change in RMS value of supply voltage. A modern LED luminaire is a nonlinear receiver as well. The paper presents the results of the analysis of the influence of change in RMS value of supply voltage and the level of dimming of the tested luminaire on the value of the current THD. The analysis was made using a mathematical model based on multivariable polynomial fitting.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jiasen Sun ◽  
Shuqi Xu ◽  
Guo Li

PurposeThe power industry is the pillar industry of the Chinese economy, and also a major carbon emitter. The performances of both the production and operation of the power industry are crucial for a harmonious development of society. This study proposes an improved data envelopment analysis (DEA) model to analyze the sustainable performance of China's power supply chain (PSC).Design/methodology/approachTo analyze the sustainable performance of PSC systems in China's provincial regions, this study proposes a two-stage directional distance function (DDF) model. The proposed model not only considers the leader–follower game relationship between the power-generation system and the retail system, but also considers the factors that measure the sustainability level of the PSC.FindingsThe proposed model is applied to assess the sustainable performance of the PSCs of China's provincial regions. The findings are valuable and mainly include the following aspects: First, compared with other models, this study regards the intermediate variable of the power system as a freely disposable variable; therefore, the efficiency of the proposed model is more realistic. Second, the average efficiency of China's power retailing system is generally lower than the average efficiency of its power-generation system. Third, significant regional differences affect the power-generation efficiency, while the regional differences in power retail efficiency are not significant. The power-generation performances of PSCs in East China and Northeast China are generally higher than in other regions.Originality/valueThis study introduces the convex technique into a DEA model and thus proposes an improved two-stage DDF DEA model. In response to the game-theoretic inherent in power systems, this study also introduces the leader–follower game into the two-stage model. In addition to the theoretic novelty, all PSCs can be classified with this model. Moreover, specific recommendations for each type of PSCs are proposed based on the efficiency results, thus providing vital guidance for the practice.


Sign in / Sign up

Export Citation Format

Share Document