Direct Torque Control for a Bearingless Induction Motor Based on Model prediction

Author(s):  
Ding Wang ◽  
Zebin Yang ◽  
Xiaodong Sun ◽  
Weiming Sun ◽  
Haitao Mei

Purpose The purpose of this paper is to address the large stator flux linkage ripple and electromagnetic torque ripple caused by the hysteresis comparator in traditional direct torque control for a bearingless induction motor (BIM). Design/methodology/approach Model predictive direct torque control (MPDTC) strategy is adopted. On the basis of the mathematical model of BIM, the stator current and stator flux observational values are obtained, and the electromagnetic torque and stator flux at the next moment are predicted. Then, based on the relationship between the stator flux and the electromagnetic torque, the predicted stator flux can be transformed into an equivalent flux linkage vector, which eliminates the weighting coefficients problem among multiple variables in traditional objective functions. The objective function and torque PI controller will output the optimal stator flux linkage and the increments of the torque phase angle. Through the phase angle increments, the space voltage vector can be obtained by the reference flux linkage controller instead of the stator flux linkage and the torque hysteresis controller. Findings The proposed MPDTC method can effectively improve the stator flux linkage and the torque ripple. It can implement the stable suspension of the rotor and improve the dynamic performance and steady-state accuracy of the BIM system. Originality/value A MPDTC strategy is proposed to reduce the ripple of stator flux and electromagnetic torque. The phase angle increment angle of stator flux linkage and electromagnetic torque is optimized by model prediction, and the optimal space voltage vector is obtained by designing the reference flux controller.

Author(s):  
Naveen Goel ◽  
Ram Narayan Patel ◽  
Saji Chacko

<span>In recent years an advanced control method called direct torque control (DTC) has gained importance due to its capability to produce fast torque control of induction motor. Although in these systems such variables as torque, flux modulus and flux sector are required, resulting DTC structure is particularly simplistic. Conventional DTC does not require any mechanical sensor or current regulator and coordinate transformation is not present, thus reducing the complexity. Fast and good dynamic performances and robustness has made DTC popular and is now used widely in all industrial applications. Despite these advantages it has some disadvantages such as high torque ripple and slow transient response to step changes during start up. Torque ripple in DTC is because of hysteresis controller for stator flux linkage and torque. The ripples can be reduced if the errors of the torque and the flux linkage and the angular region of the flux linkage are subdivided into several smaller subsections. Since the errors are divided into smaller sections different voltage vector is selected for small difference in error, thus a more accurate voltage vector is selected and hence the torque and flux linkage errors are reduced. The stator resistance changes due to change in temperature during the operation of machine. At high speeds, the stator resistance drop is small and can be neglected. At low speeds, this drop becomes dominant. Any change in stator resistance gives wrong estimation of stator flux and consequently of the torque and flux. Therefore, it is necessary to estimate the stator resistance correctly. This paper aims to review some of the control techniques of DTC drives and stator resistance estimation methods.</span>


Author(s):  
Najimaldi M. Abbas

The squirrel cage induction motor direct torque control main problems due to torque and large stator flux pulsation. In this an improved model predictive direct torque control algorithm considering multi-step delay compensation is proposed. At each sampling moment, predict the stator flux linkage and torque at the next moment under each voltage vector. The optimal voltage vector deviation from the stator flux linkage reference value and torque reference value are selected as the minimum objective function. Aiming at the problem of one-shot delay in digital control systems, a multi-step predictive delay compensation measure is studied. Simulation shows that the algorithm can effectively reduce torque and stator flux pulsation, reduce current harmonic distortion, and solve the delay problem in digital systems.


Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2154 ◽  
Author(s):  
Dazhi Wang ◽  
Tianqing Yuan ◽  
Xingyu Wang ◽  
Xinghua Wang ◽  
Yongliang Ni

In order to improve the performance of the servo control system driven by a permanent magnet synchronous motor (PMSM) under novel direct torque control (NDTC), which, utilizing composite active vectors, fixed sector division criterion, is proposed in this paper. The precondition of the accurate compensations of torque and flux errors is that the sector where the stator flux linkage is located can be determined accurately. Consequently, the adaptive sector division criterion is adopted in NDTC. However, the computation burden is inevitably increased with the using of the adaptive part. On the other hand, the main errors can be compensated through SV-DTC (DTC-utilizing single active vector), while another active vector applied in NDTC can only supply the auxiliary error compensation. The relationships of the two active vectors’ characteristics in NDTC are analyzed in this paper based on the active factor. Furthermore, the fixed sector division criterion is proposed for NDTC (FS-NDTC), which can classify the complexity of the control system. Additionally, the switching table for the selections of the two active vectors is designed. The effectiveness of the proposed FS-NDTC is verified through the experimental results on a 100-W PMSM drive system.


2020 ◽  
Vol 306 ◽  
pp. 04007
Author(s):  
Qianni Li ◽  
Aide Xu ◽  
Chaoyi Shang ◽  
Lepeng Huang

This paper proposes a novel deadbeat torque and flux control (DB-DTFC) to reduce torque ripple for switched reluctance motor (SRM). DB-DTFC combines the advantages of direct torque control (DTC) and space-vector modulation (SVM). DB-DTFC leads current vector control into DTC in order to find the equation between torque and current through deadbeat prediction theory i.e. a beat reaches a given point. In addition, the deadbeat calculation module here is similar to that of permanent magnet synchronous motor. Based on dq0 reference frame of SRM, the most suitable dq0 axis current of next moment corresponding to different torque errors is calculated and predicted. According to the calculated dq0 axis current, the optimal space voltage vectors can be selected to reduce torque ripple. In order to verify the effectiveness and correctness of the proposed scheme, DB-DTFC is verified and compared with the DTC-SVM by simulation.


Author(s):  
Hamdi Echeikh ◽  
Hichem Kesraoui ◽  
Ramzi Trabelsi ◽  
Atif Iqbal ◽  
Mohamed Faouzi Mimouni

Purpose This paper aims to deal with direct torque controller when the five-phase induction motor drive in faulty operation. Precisely, open-phase fault condition is contemplated. Also, the DTC is combined with a speed-adaptive variable-structure observer based on sliding mode observer. Design methodology/approach Two novel features are presented. First, the concept of the virtual voltage vector is presented, which eliminates low-frequency harmonic currents and simplifies analysis. Second, speed information is introduced into the selection of the inverter states. Findings Direct torque control (DTC) is largely used in traditional three-phase drives as a backup to rotor-stator flux-oriented methods. The classic DTC strategy was primarily designed on the base of hysteresis controllers to control two independent variables (speed, torque and flux). Due to the additional degrees of freedom offered by multiphase machine, extensive works have been extended on the ensemble five-phase drives in healthy operation. In addition, the ability to continue the operation in faulty conditions is considering one of the main advantages of multiphase machines. One can find in the literature different approaches treating this subject. The applicability of DTC after the appearing of a fault has not been enclosed in the literature. Originality/value Theoretical development is presented in details followed by simulation results using Matlab/Simulink to analyze the performance of the drive, comparing with the behavior during healthy situation.


Sign in / Sign up

Export Citation Format

Share Document