Optimization of EMI filters for electrical drives in aircraft

Author(s):  
Baidy Touré ◽  
Laurent Gerbaud ◽  
Jean-Luc Schanen ◽  
Régis Ruelland

Purpose – The purpose of this paper is to deal with the design of passive filter for power electronics voltage inverters used in aircraft electrical drives (a permanent magnet synchronous machine fed by a six-phase voltage inverter with PMW control), using optimization for both sizing and sensibility analyses. Design/methodology/approach – The approach is generic. An aid allows to modify easily the frequency model and so to check various study cases, and to carry out the filter optimization for different topologies or control strategies. Findings – The approach is generic. An aid allows to modify easily the frequency model and so to check various study cases, and to carry out the filter optimization for different topologies or control strategies. Research limitations/implications – The power electronics load is supposed to be a set of predefined harmonic sources, obtained by experiment or time simulation plus fast fourier transformation before the optimization process. Practical implications – The problem has numerous constraints on the components, mainly technological constraints. The volume is minimized, respecting electromagnetic standards and an electro magnetic interference filter prototype has been made. Originality/value – The frequency model is automatically generated. A complex aircraft application has been studied thanks to the approach. Several sensibility analyses have been carried out. An EMC filter has been sized and an experimental prototype has been made, comforting the sizing by optimization.

2011 ◽  
Vol 77 (13) ◽  
pp. 4669-4675 ◽  
Author(s):  
Dawn C. Bisi ◽  
David J. Lampe

ABSTRACTThe insect-vectored disease malaria is a major world health problem. New control strategies are needed to supplement the current use of insecticides and medications. A genetic approach can be used to inhibit development of malaria parasites (Plasmodiumspp.) in the mosquito host. We hypothesized thatPantoea agglomerans, a bacterial symbiont ofAnophelesmosquitoes, could be engineered to express and secrete anti-Plasmodiumeffector proteins, a strategy termed paratransgenesis. To this end, plasmids that include thepelBorhlyAsecretion signals from the genes of related species (pectate lyase fromErwinia carotovoraand hemolysin A fromEscherichia coli, respectively) were created and tested for their efficacy in secreting known anti-Plasmodiumeffector proteins (SM1, anti-Pbs21, and PLA2) inP. agglomeransandE. coli.P. agglomeranssuccessfully secreted HlyA fusions of anti-Pbs21 and PLA2, and these strains are under evaluation for anti-Plasmodiumactivity in infected mosquitoes. Varied expression and/or secretion of the effector proteins was observed, suggesting that the individual characteristics of a particular effector may require empirical testing of several secretion signals. Importantly, those strains that secreted efficiently grew as well as wild-type strains under laboratory conditions and, thus, may be expected to be competitive with the native microbiota in the environment of the mosquito midgut.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Vikash Gurugubelli ◽  
Arnab Ghosh

Purpose The share of renewable energy sources (RESs) in the power system is increasing day by day. The RESs are intermittent, therefore maintaining the grid stability and power balance is very difficult. The purpose of this paper is to control the inverters in microgrid using different control strategies to maintain the system stability and power balance. Design/methodology/approach In this paper, different control strategies are implemented to the voltage source converter (VSC) to get the desired performance. The DQ control is a basic control strategy that is inherently present in the droop and virtual synchronous machine (VSM) control strategies. The droop and VSM control strategies are inspired by the conventional synchronous machine (SM). The main objective of this work is to design and implement the three aforementioned control strategies in microgrid. Findings The significant contributions of this work are: the detailed implementation of DQ control, droop control and VSM control strategies for VSC in both grid-connected mode and standalone mode is presented; the MATLAB/Simulink simulation results and comparative studies of the three aforementioned controllers are introduced first time in the proposed work; and the opal-RT digital real-time simulation results of the proposed VSM control show the superiority in transient response compared to the droop control strategy. Research limitations/implications In the power system, the power electronic-based power allowed by VSM is dominated by the conventional power which is generated from the traditional SM, and then the issues related to stability still need advance study. There are some differences between the SM and VSM characteristics, so the integration of VSM with the existing system still needs further study. Economical operation of VSM with hybrid storage is also one of the future scopes of this work. Originality/value The significant contributions of this work are: the detailed implementation of DQ control, droop control and VSM control strategies for VSC in both grid-connected mode and standalone mode is presented; the MATLAB/Simulink simulation results and comparative studies of the three aforementioned controllers are introduced first time in the proposed work; and the opal-RT digital real-time simulation results of the proposed VSM control show the superiority in transient response compared to the droop control strategy.


Author(s):  
Branislav Ftorek ◽  
Milan Saga ◽  
Pavol Orsansky ◽  
Jan Vittek ◽  
Peter Butko

Purpose The main purpose of this paper is to evaluate the two energy saving position control strategies for AC drives valid for a wide range of boundary conditions including an analysis of their energy expenses. Design/methodology/approach For energy demands analysis, the optimal energy control based on mechanical and electrical losses minimization is compared with the near-optimal one based on symmetrical trapezoidal speed profile. Both control strategies respect prescribed maneuver time and define acceleration profile for preplanned rest-to-rest maneuver. Findings Presented simulations confirm lower total energy expenditures of energy optimal control if compared with near-optimal one, but the differences are only small due to the fact that two energy saving strategies are compared. Research limitations/implications Developed overall control system consisting of energy saving profile generator, pre-compensator and position control system respecting principles of field-oriented control is capable to track precomputed state variables precisely. Practical implications Energy demands of both control strategies are verified and compared to simulations and preliminary experiments. The possibilities of energy savings were confirmed for both control strategies. Originality/value Experimental verification of designed control structure is sufficiently promising and confirmed assumed energy savings.


2018 ◽  
Vol 9 (6) ◽  
pp. 723-736 ◽  
Author(s):  
Elisa Calabrese ◽  
Pasquale Longo ◽  
Carlo Naddeo ◽  
Annaluisa Mariconda ◽  
Luigi Vertuccio ◽  
...  

PurposeThe purpose of this paper is to highlight the relevant role of the stereochemistry of two Ruthenium catalysts on the self-healing efficiency of aeronautical resins.Design/methodology/approachHere, a very detailed evaluation on the stereochemistry of two new ruthenium catalysts evidences the crucial role of the spatial orientation of phenyl groups in the N-heterocyclic carbene ligands in determining the temperature range within the curing cycles is feasible without deactivating the self-healing mechanisms (ring-opening metathesis polymerization reactions) inside the thermosetting resin. The exceptional activity and thermal stability of the HG2MesPhSyncatalyst, with the syn orientation of phenyl groups, highlight the relevant potentiality and the future perspectives of this complex for the activation of the self-healing function in aeronautical resins.FindingsThe HG2MesPhSyncomplex, with the syn orientation of the phenyl groups, is able to activate metathesis reactions within the highly reactive environment of the epoxy thermosetting resins, cured up to 180°C, while the other stereoisomer, with the anti-orientation of the phenyl groups, does not preserve its catalytic activity in these conditions.Originality/valueIn this paper, a comparison between the self-healing functionality of two catalytic systems has been performed, using metathesis tests and FTIR spectroscopy. In the field of the design of catalytic systems for self-healing structural materials, a very relevant result has been found: a slight difference in the molecular stereochemistry plays a key role in the development of self-healing materials for aeronautical and aerospace applications.


2017 ◽  
Vol 14 (5) ◽  
pp. 433-442
Author(s):  
Aalya Banu ◽  
Asan G.A. Muthalif

Purpose This paper aims to develop a robust controller to control vibration of a thin plate attached with two piezoelectric patches in the presence of uncertainties in the mass of the plate. The main goal of this study is to tackle dynamic perturbation that could lead to modelling error in flexible structures. The controller is designed to suppress first and second modal vibrations. Design/methodology/approach Out of various robust control strategies, μ-synthesis controller design algorithm has been used for active vibration control of a simply supported thin place excited and actuated using two piezoelectric patches. Parametric uncertainty in the system is taken into account so that the robust system will be achieved by maximizing the complex stability radius of the closed-loop system. Effectiveness of the designed controller is validated through robust stability and performance analysis. Findings Results obtained from numerical simulation indicate that implementation of the designed controller can effectively suppress the vibration of the system at the first and second modal frequencies by 98.5 and 88.4 per cent, respectively, despite the presence of structural uncertainties. The designed controller has also shown satisfactory results in terms of robustness and performance. Originality/value Although vibration control in designing any structural system has been an active topic for decades, Ordinary fixed controllers designed based on nominal parameters do not take into account the uncertainties present in and around the system and hence lose their effectiveness when subjected to uncertainties. This paper fulfills an identified need to design a robust control system that accommodates uncertainties.


2001 ◽  
Vol 16 (2) ◽  
pp. 157-166 ◽  
Author(s):  
S. Siami ◽  
C. Joubert ◽  
C. Glaize

2016 ◽  
Vol 54 (10) ◽  
pp. 2436-2447 ◽  
Author(s):  
Matthew L. Faron ◽  
Nathan A. Ledeboer ◽  
Blake W. Buchan

Infections attributable to vancomycin-resistantEnterococcus(VRE) strains have become increasingly prevalent over the past decade. Prompt identification of colonized patients combined with effective multifaceted infection control practices can reduce the transmission of VRE and aid in the prevention of hospital-acquired infections (HAIs). Increasingly, the clinical microbiology laboratory is being asked to support infection control efforts through the early identification of potential patient or environmental reservoirs. This review discusses the factors that contribute to the rise of VRE as an important health care-associated pathogen, the utility of laboratory screening and various infection control strategies, and the available laboratory methods to identify VRE in clinical specimens.


Sign in / Sign up

Export Citation Format

Share Document