Anchor shape gap coupled patch antenna for WiMAX and WLAN applications

Author(s):  
Vivek Singh ◽  
Brijesh Mishra ◽  
Rajeev Singh

Purpose Purpose of this study is to design a compact gap coupled anchor shape patch antenna for wireless local area network/high performance radio local area network and worldwide interoperability for microwave access applications. Design/methodology/approach An anchor shape microstrip antenna is conceived, designed, simulated and measured. The anchor shape antenna is transformed to its rectangular equivalent by conserving the patch area. Modeling and simulation of the antenna is performed by Ansys high frequency structure simulator (HFSS) electromagnetic solver based on the concept of finite element method. The simulated results are experimentally verified by using Agilent E5071C vector network analyzer. Theoretical analysis of an electromagnetically gap coupled anchor shape microstrip patch antenna has been performed by obtaining the lumped element equivalent of the transformed antenna. Findings The proposed antenna has a compact conducting patch of dimension 0.26λ × 0.12λ mm2 (λ is calculated at lower resonating frequency of 3.56 GHz) with impedance bandwidths of 100 and 140 MHz and antenna gains of 1.91 and 3.04 dB at lower resonating frequency of 3.56 GHz and upper resonating frequency of 5.4 GHz, with omni-directional radiation pattern. Originality/value In literature, one does not encounter anchor shape antenna using the concept of gap coupling and parasitic patches. The design has been optimized for wireless local area network/worldwide interoperability for microwave access applications with a relatively low patch area (291.12 mm2) as compared to other reported antennas for wireless local area network/worldwide interoperability for microwave access applications. Transformed antenna and the actual experimental antenna behavior varies, but the resonant frequencies of the transformed antenna as observed by theoretical analysis and simulated results (by high frequency structure simulator) are reasonably close, and the percentage difference between the resonant frequencies (both at lower and upper bands) is within the permissible limit of 1-2.5 per cent. Results confirm the theoretical proposition of transformation of shapes in antenna design, which allows a designer to adapt the design shape according to the application.

2019 ◽  
Vol 8 (2) ◽  
pp. 4342-4346

An antenna that exhibits reconfiguration in frequency is introduced in this paper that can act as an ultrawide band antenna as well as a narrow band antenna according to the switching status of the design. This antenna structure provides a wide band coverage from 3.02 to 9 GHz and narrow band coverage from 3.45 to 6.45 GHz, 5.04 to 7.65 GHz and 7.04 to 8.58 GHz corresponding to four switching configurations. The simulation software used is Ansoft High Frequency Structure Simulator (HFSS). The results from simulation and measurement are found to be matching. This design finds its applications in Worldwide Interoperability for Microwave Access, Wireless Local Area Network, Cognitive Radio, Satellites, etc.


Jurnal Teknik ◽  
2018 ◽  
Vol 7 (1) ◽  
Author(s):  
Heru Abrianto

Microstrip antenna which designed with dual feeding at 2.4 GHz and 5.8 GHz can meet WLAN (Wireless Local Area Network) application.Antenna fabrication use PCB FR4 double layer with thickness 1.6 mm and dielectric constant value 4.4. The length of patch antenna according to calculation 28.63 mm, but to get needed parameter length of patch should be optimized to 53 mm. After examination, this antenna has VSWR 1.212 at 2.42 GHz and 1.502 at 5.8 GHz, RL -13.94 dB at 2.42 GHz and -20.357 dB at 5.8 GHz, gain of antenna 6.16 dB at 2.42 GHz and 6.91 dB at 5.8 GHz, the radiation pattern is bidirectional. Keywords : microstrip antenna, wireless LAN, dual polarization, single feeding technique


In this paper,CPW fed Trapezoid shape patch antenna is analyzed and investigated for Wireless Local Area Network (WLAN) application. The proposed antenna is fabricated on FR4 substrate having dimensions of 19mm ×21.2mm ×1.6mm. It resonates at 5.44 GHz frequency with peak return loss of 25.8 dB. The parametric study of proposed antenna is carried out to understand the effect of different values of ground plane on the impedance bandwidth, return loss of the antenna andalso to optimize the antenna parameters. The CPW-fed is used to enhance the bandwidth and to reduce the return loss of the antenna. The importance of different design parameters like current distribution, S-parameter, gain, and radiation pattern are studied. The results of the proposed antenna are useful for WLAN Application.


Author(s):  
Gaurav Varma ◽  
Rishabh Kumar Baudh

The aim is to design a Rhombus microstrip patch antenna. The antenna operates at FL=1.447 GHz to FH=2.382 GHz frequency for wireless local area network (WLAN). This antenna operates at f=1.914 GHz resonant frequency. In microstrip patch antenna, many types of shapes like circular, triangular, rectangular, square, ring shape, etc. are used, but in this design a rectangular shape is used. In proposed antenna, the accuracy and efficiency are increased. Integral equation three-dimensional (3D) software (IE3D) is used for the optimize of the rhombus cross-slotted antenna design. The IE3D uses a full wave method of moment simulator. This antenna fabricated on FR4 glass epoxy double-sided copper dielectric material with relative permittivity of ∈ =4.4, thickness h= 1.60mm, and loss tangent is 0.013.


Circuit World ◽  
2020 ◽  
Vol 46 (4) ◽  
pp. 355-362
Author(s):  
Yashar Zehforoosh ◽  
Mehdi Zavvari

Purpose This purpose of this study is to present a novel four-element array antenna in combination with a modified Wilkinson power divider feeding network. Design/methodology/approach The two covering bands of this planar array antenna are achieved by an Elephant trunk shape (ETS) radiating element; therefore, two frequency bands for Bluetooth (2.4 GHz) and the wireless local area network (WLAN) band (5.15-5.825 GHz) are obtained. Findings An improved design of the power divider with curved corners rather than the sharp edges and certain new modifications in the length of matching stubs are implemented. Originality/value This paper describes an improved four-way Wilkinson power divider with excellent loss of insertion and adequate return loss for all ports and good isolation performance within two frequency bands (2.4 and 5.5 GHz) and when loaded with array components; the modified power divider complies with the design requirements. To comprehend its behavior, numerical and experimental results are provided. The simulated and measured results indicate a proper bandwidth coverage of the suggested antenna, stable radiation patterns and high gain.


Sign in / Sign up

Export Citation Format

Share Document