A reliable model for the compensation loop of multistage amplifiers at high frequency

Circuit World ◽  
2019 ◽  
Vol 45 (4) ◽  
pp. 268-278
Author(s):  
Hamed Aminzadeh

Purpose Multistage amplifiers require a reliable frequency compensation solution to remain stable in a closed-loop configuration. A frequency compensation scheme creates an inner negative feedback loop amongst different amplifying stages and shapes the frequency response such that an unconditionally stable single-pole amplifier results for closed-loop operation. The frequency compensation loop is thus responsible for the placement of the poles and zeros and the final stability of multistage amplifiers. An amplifier incorporating a sophisticated frequency compensation network cannot be, however, analyzed in the presence of a complex ac feedback loop. The purpose of this study is to provide a reliable model for the compensation loop of multistage amplifiers at the higher frequencies. Design/methodology/approach In this paper, the major part of the amplifier, including a two-port network comprising the compensation network, is characterized using a reliable feedback model. Findings The model integrates all the frequency-dependent components of the frequency compensation network, and it can evaluate the nondominant real or complex poles of an amplifier. Originality/value The reliability of the proposed model is verified through analysis of the frequency response of the amplifiers and by comparing the analytic results with the simulation results in standard CMOS process.

2020 ◽  
Vol 15 (4) ◽  
pp. 1613-1653
Author(s):  
Jaber Valizadeh ◽  
Ehsan Sadeh ◽  
Zainolabedin Amini Sabegh ◽  
Ashkan Hafezalkotob

Purpose In this study, the authors consider the key decisions in the design of the green closed-loop supply chain (CSLC) network. These decisions include considering the optimal location of suppliers, production facilities, distribution, customers, recycling centers and disposal of non-recyclable goods. In the proposed model, the level of technology used in recycling and production centers is taken into account. Moreover, in this paper is the environmental impacts of production and distribution of products based on the eco-indicator 99 are considered. Design/methodology/approach In this study, the author consider the key decisions in the design of the green CLSC network. These decisions include considering the optimal location of suppliers, production facilities, distribution, customers, recycling centers and disposal of non-recyclable goods. In the proposed model, the level of technology used in recycling and production centers is taken into account. Moreover, the environmental impacts of production and distribution of products based on the eco-indicator 99 are considered. Findings The results indicate that the results obtained from the colonial competition algorithm have higher quality than the genetic algorithm. This quality of results includes relative percentage deviation and computational time of the algorithm and it is shown that the computational time of the colonial competition algorithm is significantly lower than the computational time of the genetic algorithm. Furthermore, the limit test and sensitivity analysis results show that the proposed model has sufficient accuracy. Originality/value Solid modeling of the green supply chain of the closed loop using the solid optimized method by Bertsimas and Sim. Development of models that considered environmental impacts to the closed loop supply chain. Considering the impact of the technology type in the manufacture of products and the recycling of waste that will reduce emissions of environmental pollutants. Another innovation of the model is the multi-cycle modeling of the closed loop of supply chain by considering the uncertainty and the fixed and variable cost of transport.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Saeid Jafarzadeh Ghoushchi ◽  
Iman Hushyar ◽  
Kamyar Sabri-Laghaie

PurposeA circular economy (CE) is an economic system that tries to eliminate waste and continually use resources. Due to growing environmental concerns, supply chain (SC) design should be based on the CE considerations. In addition, responding and satisfying customers are the challenges managers constantly encounter. This study aims to improve the design of an agile closed-loop supply chain (CLSC) from the CE point of view.Design/methodology/approachIn this research, a new multi-stage, multi-product and multi-period design of a CLSC network under uncertainty is proposed that aligns with the goals of CE and SC participants. Recycling of goods is an important part of the CLSC. Therefore, a multi-objective mixed-integer linear programming model (MILP) is proposed to formulate the problem. Besides, a robust counterpart of multi-objective MILP is offered based on robust optimization to cope with the uncertainty of parameters. Finally, the proposed model is solved using the e-constraint method.FindingsThe proposed model aims to provide the strategic choice of economic order to the suppliers and third-party logistic companies. The present study, which is carried out using a numerical example and sensitivity analysis, provides a robust model and solution methodology that are effective and applicable in CE-related problems.Practical implicationsThis study shows how all upstream and downstream units of the SC network must work integrated to meet customer needs considering the CE context.Originality/valueThe main goal of the CE is to optimize resources, reduce the use of raw materials, and revitalize waste by recycling. In this study, a comprehensive model that can consider both SC design and CE necessities is developed that considers all SC participants.


Sensor Review ◽  
2016 ◽  
Vol 36 (2) ◽  
pp. 193-199 ◽  
Author(s):  
Yue Ji ◽  
Xingfei Li ◽  
Tengfei Wu ◽  
Cheng Chen

Purpose Magnetohydrodynamics angular regular sensor (MHD ARS) has been used in many applications for its low noise in wide bandwidth, impact resistance and low power consumption; however, it is unable to estimate the angular velocity at low frequencies such as below 1 Hz. It is difficult to design compensation methods without an exact model. The aim of this study is to investigate a more exact analytical model characterization of the sensor’s frequency response, especially at a low-frequency zone. Design/methodology/approach A correction coefficient of electromagnetic force in simplified MHD ARS model was introduced according to the theoretical analysis of MHD flow and it was obtained by numerical simulation of electromagnetic force varying with time, space structure and frequency. Findings To make comparison, the transfer function of the designed MHD ARS in the experiment was identified using Gauss–Newton method with reasonable weights. The identification results confirmed the analytical model. Furthermore, a digital filter was designed based on the analytical model, and the compensation results showed that the frequency limit at low-frequency side was extended from 1 to 0.01 Hz. Originality/value The modified analytical model can describe the MHD ARS’s frequency response exactly and may be applied in its low-frequency compensation.


2019 ◽  
Vol 17 (1) ◽  
pp. 131-159
Author(s):  
S. Umar Sherif ◽  
P. Sasikumar ◽  
P. Asokan ◽  
J. Jerald

Purpose Due to the economic benefits and environmental awareness, most of the battery manufacturing industries in India are interested to redesign their existing supply chain network or to incorporate the effective closed loop supply chain network (CLSCN). The purpose of this paper is to develop CLSCN model with eco-friendly distribution network and also enhance recycling to utilize recycled lead for new battery production. The existing CLSCN model of a battery manufacturing industry considered for case study is customized for attaining economic benefit and environmental safety. Hence, single objective, multi-echelon, multi-period and multi-product CLSCN model with centralized depots (CD) is developed in this work to maximize the profit and reduce the emission of CO2 in transportation. Design/methodology/approach The proposed CD has the facility to store new batteries (NB), scrap batteries (SB) and lead ingot. The objective of the proposed research work is to identify potential location of CD using K-means clustering algorithm, to allocate facilities with CD using multi-facility allocation (MFA) algorithm and to minimize overall travel distance by allowing bidirectional flow of materials and products between facilities. The proposed eco-friendly CLSCN-CD model is solved using GAMS 23.5 for optimal solutions. Findings The performance of the proposed model is validated by comparing with existing model. The evaluation reveals that the proposed model is better than the existing model. The sensitivity analysis is demonstrated with different rate of return of SB, different proportion of recycled lead and different type of vehicles, which will help the management to take appropriate decision in the context of cost savings. Originality/value This research work has proposed single objective, multi echelon, multi period and multi product CLSCN-CD model in the battery manufacturing industry to maximize the profit and reduce the CO2 emission in transportation, by enhancing the bidirectional flow of materials/products between facilities of entire model.


Kybernetes ◽  
2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Hanieh Shambayati ◽  
Mohsen Shafiei Nikabadi ◽  
Seyed Mohammad Ali Khatami Firouzabadi ◽  
Mohammad Rahmanimanesh ◽  
Sara Saberi

PurposeSupply chains (SCs) have been growingly virtualized in response to the market challenges and opportunities that are presented by new and cost-effective internet-based technologies today. This paper designed a virtual closed-loop supply chain (VCLSC) network based on multiperiod, multiproduct and by using the Internet of Things (IoT). The purpose of the paper is the optimization of the VCLSC network.Design/methodology/approachThe proposed model considers the maximization of profit. For this purpose, costs related to virtualization such as security, energy consumption, recall and IoT facilities along with the usual costs of the SC are considered in the model. Due to real-world demand fluctuations, in this model, demand is considered fuzzy. Finally, the problem is solved using the Grey Wolf algorithm and Firefly algorithm. A numerical example and sensitivity analysis on the main parameters of the model are used to describe the importance and applicability of the developed model.FindingsThe findings showed that the Firefly algorithm performed better and identified more profit for the SC in each period. Also, the results of the sensitivity analysis using the IoT in a VCLSC showed that the profit of the virtual supply chain (VSC) is higher compared to not using IoT due to tracking defective parts and identifying reversible products. In proposed model, chain members can help improve chain operations by tracking raw materials and products, delivering products faster and with higher quality to customers, bringing a new level of SC efficiency to industries. As a result, VSCs can be controlled, programmed and optimized remotely over the Internet based on virtual objects rather than direct observation.Originality/valueThere are limited researches on designing and optimizing the VCLSC network. This study is one of the first studies that optimize the VSC networks considering minimization of virtual costs and maximization of profits. In most researches, the theory of VSC and its advantages have been described, while in this research, mathematical optimization and modeling of the VSC have been done, and it has been tried to apply SC virtualization using the IoT. Considering virtual costs in VSC optimization is another originality of this research. Also, considering the uncertainty in the SC brings the issue closer to the real world. In this study, virtualization costs including security, recall and energy consumption in SC optimization are considered.HighlightsInvestigates the role of IoT for virtual supply chain profit optimization and mathematical optimization of virtual closed-loop supply chain (VCLSC) based on multiperiod, multiproduct with emphasis on using the IoT under uncertainty.Considering the most important costs of virtualization of supply chain include: cost of IoT information security, cost of IoT energy consumption, cost of recall the production department, cost of IoT facilities.Selection of the optimal suppliers in each period and determination of the price of each returned product in virtual supply chain.Solving and validating the proposed model with two meta-heuristic algorithms (the Grey Wolf algorithm and Firefly algorithm).


1978 ◽  
Vol 11 (8) ◽  
pp. 302-308 ◽  
Author(s):  
E.C. Hind

A method is shown for relating the closed loop transient response to the open loop frequency response, which is based on the use of the contour of constant closed loop phase angle, α = −90°. The method primarily yields a second order model of the closed loop system which covers the full range of relative damping (0 < ζ < +∞). A first order model is recommended when prescribed conditions apply. The method is simpler and yields better results than currently used methods. In all cases it is assumed that the negative feedback loop has a transfer function of unity and that the closed loop system is stable.


Kybernetes ◽  
2016 ◽  
Vol 45 (3) ◽  
pp. 393-410 ◽  
Author(s):  
Hongru Xu ◽  
Erbao Cao

Purpose – The purpose of this paper is to develop a closed-loop supply chain (CLSC) network equilibrium model which consists of manufactures, retailers and consumer markets engaged in a Cournot pricing game with heterogeneous multi-product. Design/methodology/approach – The authors model the optimal behavior of the various decision makers and CLSC network equilibrium, and derive the equilibrium conditions based on variational inequality approach. The authors present a new Newton method to solve the proposed model. Findings – The authors find that the algorithm converges to the solution rapidly for most cases. Besides, the authors discuss the effect of some parameters on the equilibrium solution of the model, and give some insights for policy makers, such as improving the technology level of the manufacturer, reducing the cost of waste disposal and increase the minimum ration of used product to total quantity. Originality/value – The authors derive the network equilibrium conditions by the variational inequality formulation in order to obtain the computation of the equilibrium flows and prices. The authors present a new Newton method to solve the proposed model. The authors discuss the effect of some parameters on the equilibrium solution of the model, and give some managerial insights


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Zhaleh Memari ◽  
Abbas Rezaei Pandari ◽  
Mohammad Ehsani ◽  
Shokufeh Mahmudi

PurposeTo understand the football industry in its entirety, a supply chain management (SCM) approach is necessary. This includes the study of suppliers, consumers and their collaborations. The purpose of this study was to present a business management model based on supply chain management.Design/methodology/approachData were collected through in-depth interviews with 12 academic and executive football experts. After three steps of open, axial and selective coding based on grounded theory with a paradigmatic approach, the data were analysed, and a football supply chain management (FSCM) was developed. The proposed model includes three managerial components: upstream suppliers, the manufacturing firm, and downstream customers.FindingsThe football industry sector has three parts: upstream suppliers, manufacturing firm/football clubs and downstream customers. We proposed seven parts for the managerial processes of football supply chain management: event/match management, club management, resource and infrastructure management, customer relationship management, supplier relationship management, cash flow management and knowledge and information flow management. This model can be used for configuration, coordination and redesign of business operations as well as the development of models for evaluation of the football supply chain's performance.Originality/valueThe proposed model of a football supply chain management, with the existing literature and theoretical review, created a synergistic outcome. This synergy is presented in the linkage of the players in this chain and interactions between them. This view can improve the management of industry productivity and improve the products quality.


2019 ◽  
Vol 34 (6) ◽  
pp. 429-442 ◽  
Author(s):  
Manuel London

Purpose Drawing on existing theory, a model is developed to illustrate how the interaction between leaders and followers similarity in narcissism and goal congruence may influence subgroup formation in teams, and how this interaction influences team identification and team performance. Design/methodology/approach The proposed model draws on dominance complementary, similarity attraction, faultline formation and trait activation theories. Findings Leader–follower similarity in narcissism and goal congruence may stimulate subgroup formation, possibly resulting in conformers, conspirators, outsiders and victims, especially when performance pressure on a team is high. Followers who are low in narcissism and share goals with a leader who is narcissistic are likely to become conformers. Followers who are high in narcissism and share goals with a narcissistic leader are likely to become confederates. Followers who do not share goals with a narcissistic leader will be treated by the leader and other members as outsiders if they are high in narcissism, and victimized if they are low in narcissism. In addition, the emergence of these subgroups leads to reduced team identification and lower team performance. Practical implications Higher level managers, coaches and human resource professions can assess and, if necessary, counteract low team identification and performance resulting from the narcissistic personality characteristics of leaders and followers. Originality/value The model addresses how and under what conditions narcissistic leaders and followers may influence subgroup formation and team outcomes.


Sign in / Sign up

Export Citation Format

Share Document