multistage amplifiers
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 6)

H-INDEX

9
(FIVE YEARS 2)

The folded cascode operational amplifier (FCOA) designed in this paper is the single-pole operational amplifier (op amp). In this design, the conventional current mirror is replaced with wide swing current mirror to overcome the essential drawback of cascode configuration. In this paper, negative feedback is used to improve the small-signal gain and to ensure better stability than multistage amplifiers. This paper also aims at improving the output voltage swing, power dissipation and robustness of the op amp. The designed FCOA is proficient in achieving 67.44dB gain and 1.77V output swingat typical voltage for 180nm CMOS technology. The FCOA is highly stable with phase margin of 62.58º while dissipating 0.5mW power. This amplifier is further verified for variability analysis for Process, Voltage and Temperature (PVT) variations to check robustness. All together testing is done at 45 different PVT combinations and results are tabulated accordingly. At each corner temperature and voltage are varied for all together nine combinations to properly address the effect of PVT variations. The results shows that the op amp exhibits desired response at four corners (FF, TT, SS, and FS) of process, over -40º to 125º C temperature range. Also it is capable of operating at very low voltage up to 0.9V adequately showing reduction in power dissipation. Thus the designed op amp is low power, high swing and robust towards process, voltage and temperature variations.


2019 ◽  
Vol 15 (4) ◽  
pp. 379-387
Author(s):  
Tayebeh Asiyabi ◽  
Jafar Torfifard

In this paper, a new architecture of four-stage CMOS operational transconductance amplifier (OTA) based on an alternative differential AC boosting compensation called DACBC is proposed. The presented structure removes feedforward and boosts feedback paths of compensation network simultaneously. Moreover, the presented circuit uses a fairly small compensation capacitor in the order of 1 pF, which makes the circuit very compact regarding enhanced several small-signal and largesignal characteristics. The proposed circuit along with several state-of-the-art schemes from the literature have been extensively analysed and compared together. The simulation results show with the same capacitive load and power dissipation the unity-gain frequency (UGF) can be improved over 60 times than conventional nested Miller compensation. The results of the presented OTA with 15 pF capacitive load demonstrated 65° phase margin, 18.88 MHz as UGF and DC gain of 115 dB with power dissipation of 462 μW from 1.8 V.


Circuit World ◽  
2019 ◽  
Vol 45 (4) ◽  
pp. 268-278
Author(s):  
Hamed Aminzadeh

Purpose Multistage amplifiers require a reliable frequency compensation solution to remain stable in a closed-loop configuration. A frequency compensation scheme creates an inner negative feedback loop amongst different amplifying stages and shapes the frequency response such that an unconditionally stable single-pole amplifier results for closed-loop operation. The frequency compensation loop is thus responsible for the placement of the poles and zeros and the final stability of multistage amplifiers. An amplifier incorporating a sophisticated frequency compensation network cannot be, however, analyzed in the presence of a complex ac feedback loop. The purpose of this study is to provide a reliable model for the compensation loop of multistage amplifiers at the higher frequencies. Design/methodology/approach In this paper, the major part of the amplifier, including a two-port network comprising the compensation network, is characterized using a reliable feedback model. Findings The model integrates all the frequency-dependent components of the frequency compensation network, and it can evaluate the nondominant real or complex poles of an amplifier. Originality/value The reliability of the proposed model is verified through analysis of the frequency response of the amplifiers and by comparing the analytic results with the simulation results in standard CMOS process.


Sign in / Sign up

Export Citation Format

Share Document