Effect of groove shape on the hydrodynamic lubrication of journal bearing considering cavitation

2019 ◽  
Vol 37 (5) ◽  
pp. 1557-1576 ◽  
Author(s):  
Yu Chen ◽  
Jun Feng ◽  
Y. Sun ◽  
Xu Peng ◽  
Qiao Dai ◽  
...  

Purpose The purpose of this study is to investigate the influence of groove shape on the hydrodynamic characteristics of a journal bearing. Design/methodology/approach The computational fluid dynamics model also takes into account the cavitation phenomena and thermal effect, which can illustrate the lubrication performance of a journal bearing. Findings The hydrodynamic simulations of the journal bearing with the different groove shapes are conducted under different operation conditions. Originality/value Based on the numerical analysis, the suggestions are presented for groove shape selection and can be used to the design of a journal bearing under the extreme operation condition.

2016 ◽  
Vol 68 (1) ◽  
pp. 106-115 ◽  
Author(s):  
Xingxin Liang ◽  
Zhenglin Liu ◽  
Huanjie Wang ◽  
Xuhui Zhou ◽  
Xincong Zhou

Purpose – The purpose of this study is to investigate the effects of partial texture location and dimple depth on load carrying capacity (LCC), friction coefficient and circumferential flow of journal bearing. Design/methodology/approach – Based on the Navier-Stokes equation, the methodology used computational fluid dynamics (CFD). A phase change boundary condition was applied on fluid domain, and the negative pressure at divergent region of oil film was considered. Findings – It has been found that texture located at lubricant inlet area can improve the performance of the bearing, and the effect of shallow dimples is superior to the deep ones. However, the bearing performance will be reduced due to the texture located at the maximum pressure area. When texture is located at the lubricant outlet area, there will be two different situations: the part of the texture located within the oil film divergent area can improve the LCC, while the part that is beyond the divergent region will make the LCC decrease. Originality/value – The lower-half oil film model was established only in this study to analyze the hydrodynamic lubrication performance of partial textured journal bearing, and the lower-half oil film was divided into three parts. A new cavitation algorithm was introduced to deal with the negative pressure. The formula for calculating the friction of liquid film is refined, including the consideration of vapor phase. The simulation results show that the location of partial texture have a great influence on the bearing performance.


2020 ◽  
Vol 21 (3) ◽  
pp. 301
Author(s):  
Chongpei Liu ◽  
Wanyou Li ◽  
Xiqun Lu ◽  
Bin Zhao

The textures on the bushing surface have important effects on the performance of journal bearing. In this study, the effects of double parabolic profiles with groove textures on the hydrodynamic lubrication performance of journal bearing under steady operating conditions are investigated theoretically. The journal misalignment, asperity contact and thermal effects are considered, while the profile modifications due to running-in are neglected. The Winkler/Column model is used to calculate the elastic deformation of bushing surface and the adiabatic flow hypothesis is adopted to obtain the effective temperature of lubricating oil. The numerical solution is established by using finite difference and overrelaxation iterative methods, and the rupture zone of oil film is determined by Reynolds boundary conditions. The numerical results reveal that the double parabolic profiles with groove textures with proper location and geometric sizes can increase load carrying capacity and reduce friction loss under steady operating conditions, which effectively overcome the drawbacks of double parabolic profiles. This novel bushing profile may help to reduce the bushing edge wear and enhance the lubrication performance of journal bearing.


2018 ◽  
Vol 70 (1) ◽  
pp. 230-240 ◽  
Author(s):  
Yu Chen ◽  
Yu Sun ◽  
Chunping Cao

Purpose The purpose of this study is to investigate the hydrodynamic characteristics of journal bearings in a high-speed and heavy-load press system by considering thermal influence and cavitation. Design/methodology/approach A proper and effectual computational method is presented for steady-state analysis of fluid interaction in a rotor-bearing press system by combining computational fluid dynamics techniques. Findings The influences of eccentricity ratio, rotational speed and oil-film thickness on the hydrodynamic behavior of the journal bearing are studied. Originality/value The computational method can be used for creating a precise lubrication design for a journal bearing of a lubrication system.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jian Jin ◽  
Xiaochao Chen ◽  
Yiyang Fu ◽  
Yinhui Chang

Purpose This work aims to explore the combined effects of boundary slip and texturing on hydrodynamic journal bearings and identifies optimized slip and texture patterns to improve the performance of journal bearings. Design/methodology/approach The quadratic programming technique is used to study the influence of boundary slip on the lubrication performance of a two-dimensional journal bearing. A numerical model is used to analyze the effect of the cylindrical texture shape on the characteristics of journal bearings. It is concluded that the combination of slip and texture can be an effective approach to improve the performance of hydrodynamic journal bearings. Findings The results show that there is an interfacial shear stress (perfect slip surface) and that the role of the slip regime is to reduce friction. Numerical analyses indicate that the location and size of the slip and texture zone have a large effect on journal bearings. A comparison of the distribution forms of various texture–slip combinations indicates that the full texture–slip combination can prominently reduce the load-carrying capacity and that the “forward-slip backward-texture” configuration can considerably improve the performance of journal bearings. Originality/value The combined effects of boundary slip and texture on hydrodynamic journal bearings are meticulously examined. The patterns of the slip and texture are optimized, which can substantially improve the journal bearing performance.


2019 ◽  
Vol 71 (6) ◽  
pp. 772-778
Author(s):  
Zhenpeng Wu ◽  
Xianzhong Ding ◽  
Liangcai Zeng ◽  
Xiaolan Chen ◽  
Kuisheng Chen

Purpose This paper aims to use the method of curve splicing to combine the slip zone and the no-slip zone to further improve the lubrication performance of the liquid film. The combination of the slip zone and the no-slip zone of an existing heterogeneous surface is still a single line stitching method so that a very large residual space at the surface of the friction pairs remains present, necessitating further improvement of the joining scheme between the slip zone and the no-slip zone in heterogeneous surfaces. Design/methodology/approach A set of discrete sinusoids is used as the splicing track for both the slip zone and the no-slip zone, the starting point and amplitude of the curve are introduced as the simulation variables and the effects of these variables on the bearing capacity and friction coefficient of the liquid film are comprehensively analyzed. Findings The results show that the method of selecting the sinusoidal curve as the slip zone and the no-slip zone trajectory, which is based on the existing method of linear stitching, can further enhance the bearing capacity and reduce the friction coefficient of the liquid film. Originality/value This method can further enhance the bearing capacity and reduce the friction coefficient of the liquid film.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xianfei Xia ◽  
Yu Chen ◽  
Xiuying Wang ◽  
Yu Sun

The gas-lubricated thrust bearing is widely used in agriculture mechanical systems, and the groove shape plays an important role on the hydrodynamic behavior of spiral-grooved thrust bearing (SGTB). Although the groove shape may change smaller, it is clear that the hydrodynamic response is very sensitive to the groove parameters. This paper proposes a computational method for the analysis of SGTB with gas lubricant, considering the effects of groove parameters. With the compressibility taken into account, the evaluation of lubrication performance for SGTB is obtained by the CFD technology. Also, the simulation results are compared with the published data, which indicates that the presented model of SGTB is able to obtain more realistic results of hydrodynamic characteristics of SGTB. Moreover, the mapping relationship between groove parameter and hydrodynamic behavior of SGTB is represented.


2014 ◽  
Vol 66 (3) ◽  
pp. 337-345 ◽  
Author(s):  
Jun Sun ◽  
Xinlong Zhu ◽  
Liang Zhang ◽  
Xianyi Wang ◽  
Chunmei Wang ◽  
...  

Purpose – Current lubrication analyses of misaligned journal bearings were generally performed under some given preconditions. To make the lubrication analysis closer to the actual situation and usable to the journal bearing design, the purpose of this paper was to calculate the lubrication characteristics of misaligned journal bearings considering the viscosity-pressure effect of the oil, the surface roughness and the elastic deformation of the journal bearing at the same time. Design/methodology/approach – The lubrication of bearings was analyzed using the average Reynolds equation. The deformation of the bearing surface under oil film pressure was calculated by a compliance matrix method. The compliance matrix was established by finite element analysis of the bearing housing. The viscosity-pressure and viscosity–temperature equations were used in the analysis. Findings – The oil viscosity-pressure relationship has a significant effect on the lubrication of misaligned journal bearings. The surface roughness will affect the lubrication of misaligned journal bearings when the eccentricity ratio and angle of journal misalignment are all large. The directional parameter of the surface has an obvious effect on the lubrication of misaligned journal bearings. The deformation of the bearing surface has a remarkable effect on the lubrication of misaligned journal bearings. Originality/value – The lubrication characteristics of misaligned journal bearings were calculated considering the viscosity-pressure effect of the oil, the surface roughness and the elastic deformation of the journal bearing at the same time. The results of this paper are helpful to the design of the bearing.


2015 ◽  
Vol 67 (1) ◽  
pp. 30-37 ◽  
Author(s):  
Gao Gengyuan ◽  
Yin Zhongwei ◽  
Jiang Dan ◽  
Zhang Xiuli

Purpose – The purpose of this paper is to improve hydrodynamic load-carrying capacity of a water-lubricated journal bearing by a new bush structure. Water-lubricated bearing is becoming more and more popular since it is environmentally friendly and saves energy. However, contrary to oil and grease-lubricated bearings, water-lubricated bearing is limited in many situations due to its low hydrodynamic load-carrying capacity. Design/methodology/approach – The present article proposes a new bearing bush, with a transition-arc structure, which is favorable for increasing hydrodynamic load-carrying capacity. Hydrodynamic load-carrying capacity was calculated by means of three-dimensional computational fluid dynamics (3-D CFD) analysis. Several variants of a journal bearing with a transition-arc structure of different dimensions are analyzed, while the radial clearance of the bearing, eccentricity ratio and the velocity of the journal remain unchanged. Findings – The results show that obvious changes are found in hydrodynamic load-carrying capacity of a water-lubricated journal bearing. For different width over diameter (L/D) bearing ratios, the relationship between hydrodynamic load-carrying capacity and the magnitude of the transition-arc structure dimension is researched. Originality/value – The research presented here leads to a design reference guideline that could be used by the designer engineer to design smart journal bearings for improving the hydrodynamic load-carrying capacity.


2019 ◽  
Vol 72 (1) ◽  
pp. 109-115
Author(s):  
Guotao Zhang ◽  
Baohong Tong ◽  
Shubao Yang ◽  
Liping Shi ◽  
Yanguo Yin

Purpose The purpose of this paper was to study the hydrodynamic lubrication of rough bilayer porous bearing to reveal the effect of percolation. Design/methodology/approach The seepage lubrication model of the circular bilayer porous bearing was established in polar coordinates. The digital filtering technique and Darcy’s law were used to simulate the rough surface and the percolation characteristic of the oil bearing, respectively. The influence of the structural parameters on the lubrication performance was analyzed. Findings Compared with the ordinary monolayer oil bearing with high porosity, the bilayer bearing can reduce the whole porosity, prevent oil infiltrating into the porous medium and have better lubrication performance. The lubrication performance of bilayer oil bearing is better than that of the single-layer oil bearing which has a higher porosity. With increasing root-mean-square roughness or decreasing surface porosity, the lubrication performance of the bilayer bearing improves. The lower the porosity of the surface layer, the better the lubrication performance. Originality/value This research provides a theoretical basis for clarifying the lubrication mechanism and influence the mechanism of the bilayer oil bearing.


2018 ◽  
Vol 70 (9) ◽  
pp. 1608-1618 ◽  
Author(s):  
Ali Usman ◽  
Cheol Woo Park

Purpose Journal bearings are used in numerous rotary machines. The load carrying capacity and friction of a bearing have been major concerns in design. Recent developments in surface texturing have showed potential outcomes to improve the tribological characteristics of mating surfaces. This study aims to investigate surface textures, which are transverse to the sliding direction, for frictional response of the journal bearing. Design/methodology/approach A hydrodynamic lubrication model is considered to evaluate the effect of surface texturing on the performance of a journal bearing at varying operating conditions. The two-dimensional generalized Reynolds equation, coupled with mass-conserving Elrod cavitation algorithm, is solved to evaluate texture-induced variations in tribological performance parameters. Findings Results have showed remarkable improvements in frictional response. Moreover, micro-textures on the journal surface alter the cavitation response and film-reformation in the hydrodynamic conjunction of the plain bearing. Originality/value Operating condition-based comprehensive exhaustive optimization of texture geometry is performed to generate widespread conclusion.


Sign in / Sign up

Export Citation Format

Share Document