Darcy-Forchheimer flow of nanofluid in a rotating frame

2018 ◽  
Vol 28 (12) ◽  
pp. 2895-2915 ◽  
Author(s):  
Tasawar Hayat ◽  
Arsalan Aziz ◽  
Taseer Muhammad ◽  
Ahmed Alsaedi

Purpose The aim of this study is to elaborate three dimensional rotating flow of nanoliquid induced by a stretchable sheet subject to Darcy–Forchheimer porous space. Thermophoretic diffusion and random motion aspects are retained. Prescribed surface heat flux and prescribed surface mass flux conditions are implemented at stretchable surface. Convergent series solutions have been derived for velocities, temperature and concentration. Design/methodology/approach Optimal homotopy analysis method is implemented for the solution development. Findings The current solution demonstrates very good agreement with those of the previously published studies in the special cases of regular fluid and nanofluids. Graphical results are presented to investigate the influences of the titania and copper nanoparticle volume fractions and also the nodal/saddle indicative parameter on flow and heat transfer characteristics. Here, the thermal characteristics of hybrid nanofluid are found to be higher in comparison to the base fluid and fluid containing single nanoparticles, respectively. An important point to note is that the developed model can be used with great confidence to study the flow and heat transfer of hybrid nanofluids. Originality/value To the best of the authors’ knowledge, no such consideration has been given in the literature yet.

Author(s):  
Mohammad Yousefi ◽  
Saeed Dinarvand ◽  
Mohammad Eftekhari Yazdi ◽  
Ioan Pop

Purpose The purpose of this paper is to investigate analytically the steady general three-dimensional stagnation-point flow of an aqueous titania-copper hybrid nanofluid past a circular cylinder that has a sinusoidal radius variation. Design/methodology/approach First, the analytic modeling of hybrid nanofluid is presented, and using appropriate similarity variables, the governing equations are transformed into nonlinear ordinary differential equations in the dimensionless stream function, which is solved by the well-known function bvp4c from MATLAB. Findings The current solution demonstrates good agreement with those of the previously published studies in the special cases of regular fluid and nanofluids. Graphical results are presented to investigate the influences of the titania and copper nanoparticle volume fractions and also the nodal/saddle indicative parameter on flow and heat transfer characteristics. Here, the thermal characteristics of hybrid nanofluid are found to be higher in comparison to the base fluid and fluid containing single nanoparticles. An important point to note is that the developed model can be used with great confidence to study the flow and heat transfer of hybrid nanofluids. Originality/value Analytic modeling of hybrid nanofluid is the important originality of present study. Hybrid nanofluids are potential fluids that offer better heat transfer performance and thermophysical properties than convectional heat transfer fluids (oil, water and ethylene glycol) and nanofluids with single nanoparticles. In this investigation, titania (TiO2, 50 nm), copper (Cu, 20 nm) and the hybrid of these two are separately dispersed into the water as the base fluid and analyzed.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Tawfeeq Abdullah Alkanhal

Purpose This paper aims to disperse the silicon dioxide in water (as the mono nanofluid [MN]) and then, carbon nanotube (CNT)-silica composite in water (as the hybrid nanofluid [HN]). Design/methodology/approach Nanofluids have gained lots of attention through the recent years. Due to their usage in the industries and also medical applications, they have high protentional to be studied in different aspects. The most common study for the nanofluids is to understand the heat transfer capacity for each material in each fluid. These material(s) or fluid(s) can be one (mono nanofluid) or more than one (hybrid nanofluid). Findings The mixture of two solids is to assess the unique properties of each material and also to decrease the cost of experiments. The heat transfers for both MN and HN were measured at volume fractions up to 1.0%, and temperatures up to 50°C. Also, the heat transfers were compared. By more CNT, thermal conductivity was enhanced about 17.39% (from 12.42% of MN to 29.81% of HN). Originality/value X-Ray diffraction and field emission scanning electron microscope (FESEM) were examined for mono solids and the composite. After the experimental study, for MN and HN, four novel correlations calculated.


2020 ◽  
Vol 30 (10) ◽  
pp. 4583-4606 ◽  
Author(s):  
Najiyah Safwa Khashi’ie ◽  
Norihan Md Arifin ◽  
Ioan Pop ◽  
Roslinda Nazar ◽  
Ezad Hafidz Hafidzuddin ◽  
...  

Purpose This paper aims to scrutinize the analysis of non-axisymmetric Homann stagnation point flow and heat transfer of hybrid Cu-Al2O3/water nanofluid over a stretching/shrinking flat plate. Design/methodology/approach The similarity transformation which fulfils the continuity equation is opted to transform the coupled momentum and energy equations into the nonlinear ordinary differential equations. Numerical solutions which are elucidated in the tables and graphs are obtained using the bvp4c solver. Findings Non-unique solutions (first and second) are feasible for both stretching and shrinking cases within the specific values of the parameters. First solution is the physical/real solution based on the execution of stability analysis. An upsurge of the ratio of the ambient fluid strain rate to the plate strain rate can delay the boundary layer separation, whereas a boost of the ratio of the ambient fluid shear rate to the plate strain rate only accelerates the separation of boundary layer. The heat transfer rate of hybrid nanofluid is greater for the stretching case than the shrinking case. However, for the shrinking case, the heat transfer rate intensifies with the increment of the copper (Cu) nanoparticles volume fraction, whereas a contrary result is found for the stretching case. Originality/value The present numerical results are original and new. It can contribute to other researchers on electing the relevant parameters to optimize the heat transfer process in the modern industry, and the right parameters to generate non-unique solution so that no misjudgment on flow and heat transfer features.


2019 ◽  
Vol 29 (12) ◽  
pp. 4875-4894 ◽  
Author(s):  
Iskandar Waini ◽  
Anuar Ishak ◽  
Ioan Pop

Purpose The purpose of this paper is to study the steady mixed convection hybrid nanofluid flow and heat transfer past a vertical thin needle with prescribed surface heat flux. Design/methodology/approach The governing partial differential equations are transformed into a set of ordinary differential equations by using a similarity transformation. The transformed equations are then solved numerically using the boundary value problem solver (bvp4c) in Matlab software. The features of the skin friction coefficient and the local Nusselt number as well as the velocity and temperature profiles for different values of the governing parameters are analyzed and discussed. Findings It is found that dual solutions exist for a certain range of the mixed convection parameter where its critical values decrease with the increasing of the copper (Cu) nanoparticle volume fractions and for the smaller needle size. It is also observed that the increasing of the copper (Cu) nanoparticle volume fractions and the decreasing of the needle size tend to enhance the skin friction coefficient and the local Nusselt number on the needle surface. A temporal stability analysis is performed to determine the stability of the dual solutions in the long run, and it is revealed that only one of them is stable, while the other is unstable. Originality/value The problem of hybrid nanofluid flow and heat transfer past a vertical thin needle with prescribed surface heat flux is the important originality of the present study where the dual solutions for the opposing flow are obtained.


Author(s):  
Iskandar Waini ◽  
Anuar Ishak ◽  
Ioan Pop

PurposeThis paper aims to investigate the steady flow and heat transfer of a Cu-Al2O3/water hybrid nanofluid over a nonlinear permeable stretching/shrinking surface with radiation effects. The surface velocity condition is assumed to be of the power-law form with an exponent of 1/3. The governing equations of the problem are converted into a system of similarity equations by using a similarity transformation.Design/methodology/approachThe problem is solved numerically using the boundary value problem solver (bvp4c) in Matlab software. The results of the skin friction coefficient and the local Nusselt number as well as the velocity and temperature profiles are presented through graphs and tables for several values of the parameters. The effects of these parameters on the flow and heat transfer characteristics are examined and discussed.FindingsResults found that dual solutions exist for a certain range of the stretching/shrinking and suction parameters. The increment of the skin friction coefficient and reduction of the local Nusselt number on the shrinking sheet is observed with the increasing of copper (Cu) nanoparticle volume fractions for the upper branch. The skin friction coefficient and the local Nusselt number increase when suction parameter is increased for the upper branch. Meanwhile, the temperature increases in the presence of the radiation parameter for both branches.Originality/valueThe problem of Cu-Al2O3/water hybrid nanofluid flow and heat transfer over a nonlinear permeable stretching/shrinking surface with radiation effects is the important originality of the present study where the dual solutions for the flow reversals are obtained.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Natalia C. Roşca ◽  
Alin V. Roşca ◽  
Amin Jafarimoghaddam ◽  
Ioan Pop

Purpose The purpose of this paper is to study the laminar boundary layer cross flow and heat transfer on a rotational stagnation-point flow over either a stretching or shrinking porous wall submerged in hybrid nanofluids. The involved boundary layers are of stream-wise type with stretching/shrinking process along the surface. Design/methodology/approach Using appropriate similarity variables the partial differential equations are reduced to ordinary (similarity) differential equations. The reduced system of equations is solved analytically (by high-order perturbed field propagation for small to moderate stretching/shrinking parameter and low-order perturbation for large stretching/shrinking parameter) and numerically using the function bvp4c from MATLAB for different values of the governing parameters. Findings It was found that the basic similarity equations admit dual (upper and lower branch) solutions for both stretching/shrinking surfaces. Moreover, performing a linear stability analysis, it was confirmed that the upper branch solution is realistic (physically realizable), while the lower branch solution is not physically realizable in practice. These dual solutions will be studied in the present paper. Originality/value The authors believe that all numerical results are new and original and have not been published before for the present problem.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Saeed Dinarvand ◽  
Alireza Mahdavi Nejad

Purpose The purpose of this study is to model and solve numerically the three-dimensional off-centered stagnation point flow and heat transfer of magnesium oxide–silver/water hybrid nanofluid impinging to a spinning disk. Design/methodology/approach The applied effective thermophysical properties of hybrid nanofluid including thermal conductivity and dynamics viscosity are according to the reported experimental relations that would be expanded by a mass-based algorithm. The single phase formulations coupled with experimental-based hybrid nanofluid model is implemented to derive the governing partial differential equations which are then transferred to a set of dimensionless ordinary differential equations (ODEs) with the use of the similarity transformation method. Afterward, the reduced ODEs are solved numerically by bvp4c function from MATLAB that is a trustworthy and efficient code according to three-stage Lobatto IIIa formula. Findings The effect of spinning parameter and nanoparticles masses (mMgO, mAg) on the hydrodynamics and thermal boundary layers behavior and also the quantities of engineering interest are presented in tabular and graphical forms. The recent work demonstrates that the analysis of flow and heat transfer becomes more complicated when there is a non-alignment between the impinging flow and the disk axes. From computational results demonstrate that, the radial and azimuthal velocities are, respectively, the increasing and decreasing functions of the disk spinning parameter. Further, for the greater values of the spinning parameter, an overshoot of the radial velocity owing to the centrifugal forces of the spinning disk is observed. Besides, the quantities of engineering interest gently enhance with first and second nanoparticle masses, while comparing their absolute values illustrates the fact that the effect of second nanoparticle mass (mAg) is greater. Further, it is inferred that the second nanoparticle’s mass enhancement results in the amplification of the heat transfer; although, the high skin friction and the relevant shear stress should be controlled. Originality/value The combination of experimental thermophysical properties with theoretical modeling of the problem can be the novelty of the present work. It is evident that the experimental relations of effective thermophysical properties can be trustable and flexible in the theoretical/mathematical modeling of hybrid nanofluids flows. Besides, to the best of the authors’ knowledge, no one has ever attempted to study the present problem through a mass-based model for hybrid nanofluid.


Author(s):  
Mohammad Ghalambaz ◽  
Natalia C. Roşca ◽  
Alin V. Roşca ◽  
Ioan Pop

Purpose This study aims to study the mixed convection flow and heat transfer of Al2O3-Cu/water hybrid nanofluid over a vertical plate. Governing equations for conservation of mass, momentum and energy for the hybrid nanofluid over a vertical flat plate are introduced. Design/methodology/approach The similarity transformation approach is used to transform the set of partial differential equations into a set of non-dimensional ordinary differential equations. Finite-deference with collocation method is used to integrate the governing equations for the velocity and temperature profiles. Findings The results show that dual solutions exist for the case of opposing flow over the plate. Linear stability analysis was performed to identify a stable solution. The stability analysis shows that the lower branch of the solution is always unstable, while the upper branch of the solution is always stable. The results of boundary layer analysis are reported for the various volume fractions of composite nanoparticles and mixed convection parameter. The outcomes show that the composition of nanoparticles can notably influence the boundary layer flow and heat transfer profiles. It is also found that the trend of the variation of surface skin friction and heat transfer for each of the dual solution branches can be different. The critical values of the mixed convection parameter, λ, where the dual solution branches joint together, are also under the influence of the composition of hybrid nanoparticles. For instance, assuming a total volume fraction of 5 per cent for the mixture of Al2O3 and Cu nanoparticles, the critical value of mixing parameter of λ changes from −3.1940 to −3.2561 by changing the composition of nanofluids from Al2O3 (5 per cent) + Cu (0%) to Al2O3 (2.5%) + Cu (2.5 per cent). Originality/value The mixed convection stability analysis and heat transfer study of hybrid nanofluids for a stagnation-point boundary layer flow are addressed for the first time. The introduced hybrid nanofluid model and similarity solution are new and of interest in both mathematical and physical points of view.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Nurul Amira Zainal ◽  
Roslinda Nazar ◽  
Kohilavani Naganthran ◽  
Ioan Pop

Purpose The analysis of boundary layers is needed to reflect the behaviour of fluid flows in current industrial processes and to improve the efficacy of products. Hence, this study aims to analyse the flow and heat transfer performance of hybrid alumina-copper/water (Al2O3-Cu/H2O) nanofluid with the inclusion of activation energy and binary chemical reaction effect towards a moving wedge. Design/methodology/approach The multivariable differential equations with partial derivatives are converted into a specific type of ordinary differential equations by using valid similarity transformations. The reduced mathematical model is elucidated in the MATLAB system by using the bvp4c procedure. This solution method is competent in delivering multiple solutions once appropriate assumptions are supplied. Findings The results of multiple control parameters have been studied, and the findings are verified to provide more than one solution. The coefficient of skin friction was discovered to be increased by adding nanoparticles volume fraction from 0% to 0.5% and 1%, by almost 1.6% and 3.2%. Besides, increasing the nanoparticles volume fraction improves heat transfer efficiency gradually. The inclusion of the activation energy factor displays a downward trend in the mass transfer rates, consequently reducing the concentration profile. In contrast, the increment of the binary reaction rate greatly facilitates the augmentation of mass transfer rates. There is a significant enhancement in the heat transfer rate, approximately 13.2%, when the suction effect dominates about 10% in the boundary layer flow. Additionally, the results revealed that as the activation energy rises, the temperature and concentration profiles rise as well. It is proved that the activation energy parameter boosts the concentration of chemical species in the boundary layer. A similar pattern emerges as the wedge angle parameter increases. The current effort aims to improve the thermal analysis process, particularly in real-world applications such as geothermal reservoirs, chemical engineering and food processing, which often encountered mass transfer phenomenon followed by chemical reactions with activation energy. Originality/value The present results are original and new for the study of flow and heat transfer over a permeable moving wedge in a hybrid nanofluid with activation energy and binary chemical reaction.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ubaidullah Yashkun ◽  
Khairy Zaimi ◽  
Nor Ashikin Abu Bakar ◽  
Anuar Ishak ◽  
Ioan Pop

Purpose This study aims to investigate the heat transfer characteristic of the magnetohydrodynamic (MHD) hybrid nanofluid over the linear stretching and shrinking surface in the presence of suction and thermal radiation effects. Design/methodology/approach Mathematical equations are transformed into pairs of self-similarity equations using similarity transformation. Boundary value problem solver (bvp4c) in MATLAB was adopted to solve the system of reduced similarity equations. In this study, the authors particularly examine the flow and heat transfer properties for different values of suction and thermal radiation parameters using single-phase nanofluid model. A comparison of the present results shows a good agreement with the published results. Findings It is noticed that the efficiency of heat transfer of hybrid nanofluid (Cu-Al2O3/H2O) is greater than the nanofluid (Cu/H2O). Furthermore, it is also found that dual solutions exist for a specific range of the stretching/shrinking parameter with different values of suction and radiation parameters. The results indicate that the skin friction coefficient and the local Nusselt number increase with suction effect. The values of the skin friction coefficient increases, but the local Nusselt number decreases for the first solution with the increasing of thermal radiation parameter. It is also observed that suction and thermal radiation widen the range of the stretching/shrinking parameter for which the solution exists. Practical implications In practice, the investigation on the flow and heat transfer of MHD hybrid nanofluid through a stretching/shrinking sheet with suction and thermal radiation effects is very important and useful. The problems related to hybrid nanofluid has numerous real-life and industrial applications, for example microfluidics, manufacturing, transportation, military and biomedical, etc. Originality/value In specific, this study focused on increasing thermal conductivity using a hybrid nanofluid mathematical model. This paper is able to obtain the dual solutions. To the best of author’s knowledge, this study is new and there is no previous published work similar to present study.


Sign in / Sign up

Export Citation Format

Share Document