Numerical simulation of forced convection in a bi-disperse porous medium channel by creating new porous micro-channels inside the porous macro-blocks

2019 ◽  
Vol 29 (11) ◽  
pp. 4142-4166 ◽  
Author(s):  
Behnam Rajabzadeh ◽  
Mohammad Hojaji ◽  
Arash Karimipour

Purpose Porous medium has always been introduced as an environment for increasing heat transfer in cooling systems. However, increase in heat transfer and resolving pressure drop in the fluid flow have been focused on by researchers.The purpose of this paper is to study the effects of creating porous micro-channels inside porous macro-blocks to optimize system performance in channels. Design/methodology/approach To simulate flow field, a developed numerical code that solves Navier–Stokes equations by finite volume method and semi-implicit method for pressure linked equations (SIMPLE) algorithm will be used together with bi-disperse porous medium (BDPM) method. Working fluid is air with Pr = 0.7 in laminar state. Influence of permeability changes by creation of micro-channels containing porous medium in vertical, horizontal and cross-shape patterns will be investigated. Findings By creating porous micro-channels inside macro-blocks, not only does the heat transfer increase significantly but the pressure also drops remarkably. Increase in performance evaluation criteria (PEC) is more evident in lower Reynolds numbers that can increase the PEC to 75 per cent by creating cross-shape micro-channels. By changing the permeability of micro-channels, PEC will increase by reducing the pressure drop but it has minor changes in Nu. Research limitations/implications The current work is applicable to optimizing system performance by decreasing the pressure drop and increasing the heat transfer. Practical implications The developed patterns are useful in increasing the system performance including the increase in heat transfer and decrease in pressure drop in systems such as air coolers required in electrical circuits. Originality/value Development and optimization of system performance by new patterns using BDPM in comparison to the previous patterns.

2019 ◽  
Vol 15 (2) ◽  
pp. 452-472 ◽  
Author(s):  
Jayarami Reddy Konda ◽  
Madhusudhana Reddy N.P. ◽  
Ramakrishna Konijeti ◽  
Abhishek Dasore

PurposeThe purpose of this paper is to examine the influence of magnetic field on Williamson nanofluid embedded in a porous medium in the presence of non-uniform heat source/sink, chemical reaction and thermal radiation effects.Design/methodology/approachThe governing physical problem is presented using the traditional Navier–Stokes theory. Consequential system of equations is transformed into a set of non-linear ordinary differential equations by means of scaling group of transformation, which are solved using the Runge–Kutta–Fehlberg method.FindingsThe working fluid is examined for several sundry parameters graphically and in a tabular form. It is noticed that with an increase in Eckert number, there is an increase in velocity and temperature along with a decrease in shear stress and heat transfer rate.Originality/valueA good agreement of the present results has been observed by comparing with the existing literature results.


2019 ◽  
Vol 29 (10) ◽  
pp. 3908-3937 ◽  
Author(s):  
Younes Menni ◽  
Ahmed Azzi ◽  
Ali J. Chamkha ◽  
Souad Harmand

Purpose The purpose of this paper is to carry out a numerical study on the dynamic and thermal behavior of a fluid with a constant property and flowing turbulently through a two-dimensional horizontal rectangular channel. The upper surface was put in a constant temperature condition, while the lower one was thermally insulated. Two transverse, solid-type obstacles, having different shapes, i.e. flat rectangular and V-shaped, were inserted into the channel and fixed to the top and bottom walls of the channel, in a periodically staggered manner to force vortices to improve the mixing, and consequently the heat transfer. The flat rectangular obstacle was put in the first position and was placed on the hot top wall of the channel. However, the second V-shaped obstacle was placed on the insulated bottom wall, at an attack angle of 45°; its position was varied to find the optimum configuration for optimal heat transfer. Design/methodology/approach The fluid is considered Newtonian, incompressible with constant properties. The Reynolds averaged Navier–Stokes equations, along with the standard k-epsilon turbulence model and the energy equation, are used to control the channel flow model. The finite volume method is used to integrate all the equations in two-dimensions; the commercial CFD software FLUENT along with the SIMPLE-algorithm is used for pressure-velocity coupling. Various values of the Reynolds number and obstacle spacing were selected to perform the numerical runs, using air as the working medium. Findings The channel containing the flat fin and the 45° V-shaped baffle with a large Reynolds number gave higher heat transfer and friction loss than the one with a smaller Reynolds number. Also, short separation distances between obstacles provided higher values of the ratios Nu/Nu0 and f/f0 and a larger thermal enhancement factor (TEF) than do larger distances. Originality/value This is an original work, as it uses a novel method for the improvement of heat transfer in completely new flow geometry.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
J.C. Umavathi ◽  
O. Anwar Beg

Purpose The purpose of this paper is to investigate thermally and hydrodynamically fully developed convection in a duct of rectangular cross-section containing a porous medium and fluid layer. Design/methodology/approach The Darcy–Brinkman–Forchheimer flow model is adopted. A finite difference method of second-order accuracy with the Southwell-over-relaxation method is deployed to solve the non-dimensional momentum and energy conservation equations under physically robust boundary conditions. Findings It is found that the presence of porous structure and different immiscible fluids exert a significant impact on controlling the flow. Graphical results for the influence of the governing parameters i.e. Grashof number, Darcy number, porous media inertia parameter, Brinkman number and ratios of viscosities, thermal expansion and thermal conductivity parameters on the velocity and temperature fields are presented. The volumetric flow rate, skin friction and rate of heat transfer at the left and right walls of the duct are also provided in tabular form. The numerical solutions obtained are validated with the published study and excellent agreement is attained. Originality/value To the author’s best knowledge this study original in developing the numerical code using FORTRAN to assess the fluid properties for immiscible fluids. The study is relevant to geothermal energy systems, thermal insulation systems, resin flow modeling for liquid composite molding processes and hybrid solar collectors.


2020 ◽  
Vol 1 (21) ◽  
Author(s):  
Emami Sajjad ◽  
Hosein Dibaei Bonab Mohammad ◽  
Mohammadiun Mohammad ◽  
Mohammadiun Hamid ◽  
Sadi Maisam

Due to the shrinking of the industrial equipment, the heat transfer and cooling of these devices are ofparticular importance. Therefore, this paper studies fluid flow and heat transfer in a micro-channel. Inthis study three-dimensional laminar numerical simulations, based on the Navier–Stokes equations andenergy equation, are obtained for pressure drop and heat transfer in these micro-channel heat sinksunder the same conditions. In this article, the first step is to investigate the effect of channel shape andgeometry on the heat transfer and pressure drop in micro-channels. In, the second step, the effect ofundefined heat flux and distinct input condition is investigated, and third step, the effect of increasingthe number of channels is checked to do an ideal form of heat transfer in a micro-channel. According tothe results, heat transfer using a hexagonal micro-channel is improved 20% on the rectangular microchannel(with equal hydraulic diameter).


Author(s):  
Qingming Liu ◽  
Björn Palm ◽  
Henryk Anglart

3D simulations on confined bubbles in micro-channels with diameter of 1.24 mm were conducted. The working fluid is R134a with a mass flux range from 125kg/m2s to 375kg/m2s. The VOF model is chosen to capture the 2 phase interface while the geo-construction method was used to re-construct the 2-phase interface. A heated boundary wall with heat flux varying from 15kW/m2 to 102kW/m2 is supplied. The wall temperature was calculated. The effects of mass flux and heat flux are studied. The shape of the bubble was predicted by the simulation successfully and the results show that they are independent of the initial shape. Both thin film evaporation and micro convection enhance the heat transfer. However, the micro convection which is caused by bubble motion has greater contribution to the total heat transfer at the stage of bubble growth studied.


Author(s):  
Weilin Qu ◽  
Seok-Mann Yoon ◽  
Issam Mudawar

Knowledge of flow pattern and flow pattern transitions is essential to the development of reliable predictive tools for pressure drop and heat transfer in two-phase micro-channel heat sinks. In the present study, experiments were conducted with adiabatic nitrogen-water two-phase flow in a rectangular micro-channel having a 0.406 × 2.032 mm cross-section. Superficial velocities of nitrogen and water ranged from 0.08 to 81.92 m/s and 0.04 to 10.24 m/s, respectively. Flow patterns were first identified using high-speed video imaging, and still photos were then taken for representative patterns. Results reveal that the dominant flow patterns are slug and annular, with bubbly flow occurring only occasionally; stratified and churn flow were never observed. A flow pattern map was constructed and compared with previous maps and predictions of flow pattern transition models. Annual flow is identified as the dominant flow pattern for conditions relevant to two-phase micro-channel heat sinks, and forms the basis for development of a theoretical model for both pressure drop and heat transfer in micro-channels. Features unique to two-phase micro-channel flow, such as laminar liquid and gas flows, smooth liquid-gas interface, and strong entrainment and deposition effects are incorporated into the model. The model shows good agreement with experimental data for water-cooled heat sinks.


2004 ◽  
Vol 126 (2) ◽  
pp. 247-255 ◽  
Author(s):  
Duckjong Kim ◽  
Sung Jin Kim

In the present work, a compact modeling method based on a volume-averaging technique is presented. Its application to an analysis of fluid flow and heat transfer in straight fin heat sinks is then analyzed. In this study, the straight fin heat sink is modeled as a porous medium through which fluid flows. The volume-averaged momentum and energy equations for developing flow in these heat sinks are obtained using the local volume-averaging method. The permeability and the interstitial heat transfer coefficient required to solve these equations are determined analytically from forced convective flow between infinite parallel plates. To validate the compact model proposed in this paper, three aluminum straight fin heat sinks having a base size of 101.43mm×101.43mm are tested with an inlet velocity ranging from 0.5 m/s to 2 m/s. In the experimental investigation, the heat sink is heated uniformly at the bottom. The resulting pressure drop across the heat sink and the temperature distribution at its bottom are then measured and are compared with those obtained through the porous medium approach. Upon comparison, the porous medium approach is shown to accurately predict the pressure drop and heat transfer characteristics of straight fin heat sinks. In addition, evidence indicates that the entrance effect should be considered in the thermal design of heat sinks when Re Dh/L>∼O10.


Author(s):  
Younes Menni ◽  
Ahmed Azzi ◽  
A. Chamkha

Purpose This paper aims to report the results of numerical analysis of turbulent fluid flow and forced-convection heat transfer in solar air channels with baffle-type attachments of various shapes. The effect of reconfiguring baffle geometry on the local and average heat transfer coefficients and pressure drop measurements in the whole domain investigated at constant surface temperature condition along the top and bottom channels’ walls is studied by comparing 15 forms of the baffle, which are simple (flat rectangular), triangular, trapezoidal, cascaded rectangular-triangular, diamond, arc, corrugated, +, S, V, double V (or W), Z, T, G and epsilon (or e)-shaped, with the Reynolds number changing from 12,000 to 32,000. Design/methodology/approach The baffled channel flow model is controlled by the Reynolds-averaged Navier–Stokes equations, besides the k-epsilon (or k-e) turbulence model and the energy equation. The finite volume method, by means of commercial computational fluid dynamics software FLUENT is used in this research work. Findings Over the range investigated, the Z-shaped baffle gives a higher thermal enhancement factor than with simple, triangular, trapezoidal, cascaded rectangular-triangular, diamond, arc, corrugated, +, S, V, W, T, G and e-shaped baffles by about 3.569-20.809; 3.696-20.127; 3.916-20.498; 1.834-12.154; 1.758-12.107; 7.272-23.333; 6.509-22.965; 8.917-26.463; 8.257-23.759; 5.513-18.960; 8.331-27.016; 7.520-26.592; 6.452-24.324; and 0.637-17.139 per cent, respectively. Thus, the baffle of Z-geometry is considered as the best modern model of obstacles to significantly improve the dynamic and thermal performance of the turbulent airflow within the solar channel. Originality/value This analysis reports an interesting strategy to enhance thermal transfer in solar air channels by use of attachments with various shapes


2015 ◽  
Vol 1105 ◽  
pp. 253-258 ◽  
Author(s):  
Weerapun Duangthongsuk ◽  
Somchai Wongwises

This research presents an experimental investigation on the heat transfer performance and pressure drop characteristics of a heat sink with miniature square pin fin structure using nanofluids as coolant. ZnO-water nanofluids with particle concentrations of 0.2, 0.4 and 0.6 vol.% are used as working fluid and then compared with the data for water-cooled heat sink. Heat sink made from aluminum material with dimension around 28 x 33 x 25 mm (width x length x thickness). The heat transfer area and hydraulic diameter of the each flow channel is designed at 1,565 mm2and 1.2 mm respectively. Uniform heat flux at the bottom of heat sink is achieved using an electric heater. The experimental data illustrate that the thermal performance of heat sink using nanofluids as coolant is average 14% higher than that of the water-cooled heat sink. For pressure drop, the data show that the pressure drop of nanofluids is a few percent larger than that of the water-cooled heat sink.


Sign in / Sign up

Export Citation Format

Share Document