Influence of lignin modification on the mechanical properties of lignin/PEO blends

2016 ◽  
Vol 7 (6) ◽  
pp. 762-772 ◽  
Author(s):  
Stavros C. Anagnou ◽  
Eleni G. Milioni ◽  
Costas S. Mpalias ◽  
Ioannis A. Kartsonakis ◽  
Elias P. Koumoulos ◽  
...  

Purpose The purpose of this paper is to focus on the investigation of mechanical and thermal properties of lignin/poly (ethylene oxide) (PEO) blends, intended to be used as carbon fiber precursor. Design/methodology/approach Softwood kraft lignin was modified via esterification using phthalic anhydride and then blended with PEO. The final lignin/PEO ratios blends were (w/w) 20/80, 50/50 and 80/20 for both unmodified and modified lignin. The structural, thermal and mechanical properties of the blends were investigated by Fourier transform infrared, differential scanning calorimetry and tensile tests, respectively. Findings The results revealed that modified lignin/PEO blend (20/80) exhibited enhanced elongation. Originality/value The structural analysis as well as thermal and mechanical properties of the produced blends are clearly demonstrated.

e-Polymers ◽  
2008 ◽  
Vol 8 (1) ◽  
Author(s):  
Morteza Ghorbanzadeh Ahangari ◽  
Abdolhosein Fereidoon ◽  
Seyfolah Saedodin

AbstractIn the present work, the effect of different acid treatment times of singlewalled carbon nanotubes (SWNTs) on the mechanical and thermal properties of polypropylene (PP)/maleated polypropylene (PP-g-MA) nanocomposites was investigated. The acid treatment process was based on a mixture of concentrated sulphuric and nitric acids. The SWNTs were treated with the acid mixture for 1, 3, and 6 h. FTIR, Raman spectroscopy and TEM revealed the values of carboxylic groups, graphitization and morphology of acid treated SWNTs, respectively. The thermal and mechanical properties and the morphology of nanocomposites were investigated by tensile tests, DMTA, DSC, and SEM.


Polymer ◽  
1978 ◽  
Vol 19 (9) ◽  
pp. 1079-1082 ◽  
Author(s):  
S. Cimmino ◽  
R. Greco ◽  
E. Martuscelli ◽  
L. Nicolais ◽  
C. Silvestre

Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1043 ◽  
Author(s):  
Marta Piątek-Hnat ◽  
Kuba Bomba ◽  
Jakub Pęksiński ◽  
Agnieszka Kozłowska ◽  
Jacek G. Sośnicki ◽  
...  

The aim of this work was to investigate the thermal and mechanical properties of novel, electron beam-modified ester elastomers containing multifunctional alcohols. Polymers tested in this work consist of two blocks: sebacic acid–butylene glycol block and sebacic acid–sugar alcohol block. Different sugar alcohols were utilized in the polymer synthesis: glycerol, sorbitol, xylitol, erythritol, and mannitol. The polymers have undergone an irradiation procedure. The materials were irradiated with doses of 50 kGy, 100 kGy, and 150 kGy. The expected effect of using ionizing radiation was crosslinking process and improvement of the mechanical properties. Additionally, a beneficial side effect of the irradiation process is sterilization of the affected materials. It is also worth noting that the materials described in this paper do not require either sensitizers or cross-linking agent in order to perform radiation modification. Radiation-modified poly(polyol sebacate-co-butylene sebacate) elastomers have been characterized in respect to the mechanical properties (quasi-static tensile tests), cross-link density, thermal properties (Differential Scanning Calorimetry (DSC)), chemical properties: Fourier transform infrared spectroscopy (FTIR), and wettability (water contact angle). Poly(polyol sebacate-co-butylene sebacate) preopolymers were characterized with nuclear magnetic resonance spectroscopy (1H NMR and 13C NMR) and gel permeation chromatography (GPC). Thermal stability of cross-linked materials (directly after synthesis process) was tested with thermogravimetric analysis (TGA).


Polymers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1403
Author(s):  
Vojtěch Kupka ◽  
Eva Dvořáková ◽  
Anton Manakhov ◽  
Miroslav Michlíček ◽  
Josef Petruš ◽  
...  

Biodegradable composite nanofibers were electrospun from poly(ε-caprolactone) (PCL) and poly(ethylene oxide) (PEO) mixtures dissolved in acetic and formic acids. The variation of PCL:PEO concentration in the polymer blend, from 5:95 to 75:25, revealed the tunability of the hydrolytic stability and mechanical properties of the nanofibrous mats. The degradation rate of PCL/PEO nanofibers can be increased compared to pure PCL, and the mechanical properties can be improved compared to pure PEO. Although PCL and PEO have been previously reported as immiscible, the electrospinning into nanofibers having restricted dimensions (250–450 nm) led to a microscopically mixed PCL/PEO blend. However, the hydrolytic stability and tensile tests revealed the segregation of PCL into few-nanometers-thin fibrils in the PEO matrix of each nanofiber. A synergy phenomenon of increased stiffness appeared for the high concentration of PCL in PCL/PEO nanofibrous mats. The pure PCL and PEO mats had a Young’s modulus of about 12 MPa, but the mats made of high concentration PCL in PCL/PEO solution exhibited 2.5-fold higher values. The increase in the PEO content led to faster degradation of mats in water and up to a 20-fold decrease in the nanofibers’ ductility. The surface of the PCL/PEO nanofibers was functionalized by an amine plasma polymer thin film that is known to increase the hydrophilicity and attach proteins efficiently to the surface. The combination of different PCL/PEO blends and amine plasma polymer coating enabled us to tune the surface functionality, the hydrolytic stability, and the mechanical properties of biodegradable nanofibrous mats.


Sign in / Sign up

Export Citation Format

Share Document