maleated polypropylene
Recently Published Documents


TOTAL DOCUMENTS

118
(FIVE YEARS 10)

H-INDEX

30
(FIVE YEARS 2)

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Sumit Nijjar ◽  
P. Sudhakara ◽  
Shubham Sharma ◽  
Sanjeev Saini ◽  
Aklilu Teklemariam ◽  
...  

Tribological properties of the novel Borassus fruit fine fiber- (BFF-) reinforced polypropylene (PP) composites with respect to fiber matrix surface modifications have been described. Composites were fabricated by an injection molding process using Borassus fruit fine fiber (BFF) of 5 wt.% as reinforcement and polypropylene (PP) as a matrix component. Fibers were treated with alkali (T) to remove the residual lignin (if present) and to enhance the interfacial adhesion between the fiber/matrix interface. Alkali treatment reveals additional reactive functional groups here on the surface of the Borassus fiber, allowing effective interaction bonding with the polypropylene matrix. Borassus fibers are primarily treated with an alkali solution to extract weaker unstructured amorphous constituents so that the fibers retain crystallized components, thereby strengthening the fiber’s strength. A 5 wt.% of maleated polypropylene (MAPP) was used as a compatibilizer to improve the interfacial adhesion between fiber and the polymer matrix. The wear and frictional behavior of BFF/PP composites with respect to the modifications were evaluated by steel counterface utilizing pin-on-disc test contraption under dry-sliding conditions. The sliding velocity, applied load, and sliding distance were maintained as 2.198 m/s, 9.81–29.43 N, and 4000 m, respectively. The results demonstrate that the reinforcement of BFF to polypropylene matrix and the modifications improved the wear properties of the neat polymer matrix. Findings concluded that the abrasive wear resistance of T + PP + MAPP composite showed better interfacial adhesion and bonding, thus resulting in better tribological performance as compared to the other three compositions under different loading conditions. The effective substantial improvement of the coefficient of friction has been observed in alkali-treated fiber and polypropylene matrix with MAPP compatibilizer (T + PP + MAPP) composites due to the presence of MAPP compatibilizer and alkali-treated fibers. The frictional coefficient of T + PP + MAPP possesses better interfacial bonding strength upon NaOH treatment, and coupling agent, which results in enhancement of effective contact surface area and good surface friction characteristics, has been observed under different loading conditions. The fracture mechanism of worn-out portions of BFF/PP composites was studied using high-resolution scanning electron microscopy to analyze various imperfections like debonding, splits, fiber cracks, and wreckage or fragments formation.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2335
Author(s):  
Chihaoui Belgacem ◽  
Ferran Serra-Parareda ◽  
Quim Tarrés ◽  
Pere Mutjé ◽  
Marc Delgado-Aguilar ◽  
...  

In this work, date palm waste (DPW) stemming from the annual pruning of date palm was used as a reinforcing filler in polypropylene matrix at 20–60 wt.%. Only a grinding process of the DPW has been performed to ensure no residue generation and full utilization. The present work investigates how the DPW use affects mechanical properties and water absorption of the ensuing composite. The effect of the addition of maleated polypropylene (MAPP) as a coupling agent on the composite properties was also studied. It was shown that the reinforcing potential of DPW was strongly dependent on aspect ratio and interface quality. The MAPP addition resulted in a composite with higher strength and stiffness than the neat PP, meaning that DPW behaves as reinforcement. The difference in the reinforcing effect was explained by the change in the quality of the interface between date palm waste and the polypropylene polymeric chain.


Fibers ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 17
Author(s):  
Arne Schirp ◽  
Claudia Schirp

The effectiveness of maleated polypropylene (MAPP) in emulsified form for the pre-treatment of thermo-mechanical pulp (TMP) before extrusion with polypropylene fibres was evaluated. MAPP in pellet form, which was applied during the compounding step, served as a benchmark. In addition, commercial softwood flour was included as a reference. The influence of the temperature during the defibration process and the presence or absence of the coupling agent on composite performance were evaluated. Composites were processed with a high wood content of 70 wt.%, which is common for extruded profiles. It was found that TMP based on Robinia (Robinia pseudoacacia L.) conferred higher strength properties to the composites compared to TMP based on Scots pine (Pinus sylvestris L.), which was attributed to the higher length/diameter ratio of fibres in Robinia. However, under the conditions of this study, strength properties were superior and water uptake and swelling were reduced when wood flour was used instead of TMP. On the other hand, in many formulations, larger improvements in flexural and tensile strength due to MAPP were found for the TMP-based composites compared to the wood flour-based composites. This could be due to the larger surface/volume ratio for TMP compared to wood flour and more efficient stress transfer from fibres to the matrix. Results from X-ray photoelectron spectroscopy (XPS) showed that TMP surfaces were more hydrophobic than wood flour due to coverage with lignin, which reduced the effectiveness of MAPP. Esterification between the emulsified MAPP and fibre surfaces was determined using Fourier-Transform Infrared (FTIR) spectroscopy, but some non-activated maleic anhydride remained. Under the conditions of this study, MAPP added during compounding provided better performance compared to MAPP which included a non-ionic emulsifier and which was added during the refining process. Lower temperature (150 °C) during defibration was shown to be beneficial for the strength properties of composites compared to high temperature (180 °C) when MAPP was included in the formulations.


2020 ◽  
Vol 138 (8) ◽  
pp. 49889
Author(s):  
Alejandra Lara ◽  
Adrien Létoffé ◽  
Sandrine Hoppe ◽  
Maxime Mourer ◽  
Christian G'sell ◽  
...  

Polymers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1423
Author(s):  
Chihaoui Belgacem ◽  
Quim Tarres ◽  
Francesc Xavier Espinach ◽  
Pere Mutjé ◽  
Sami Boufi ◽  
...  

In this work, date palm waste (DPW) stemming from the annual pruning of date palm was used as reinforcing filler in polypropylene (PP) matrix at 40% w/w. Three pre-treatment routes were performed for the DPW, namely (i) defibration, (ii) soft alkali treatment, and (iii) enzymatic treatment, to obtain date palm fibers (DPF) and to investigate the effect of each process on their chemical composition, which will ultimately affect the mechanical properties of the resulting composites. The enzymatic and alkali treatment, combined with maleated polypropylene (MAPP) as a coupling agent, resulted in a composite with higher strength and stiffness than the neat PP. The differences in the reinforcing effect were explained by the change in the morphology of DPF and their chemical surface composition according to the selected treatment of DPW. Enzymatic treatment maximized the tensile strength of the compound as a consequence of an improvement in the interfacial shear strength and the intrinsic resistance of the fibers.


2020 ◽  
Vol 850 ◽  
pp. 76-80
Author(s):  
Jānis Kajaks ◽  
Karlis Kalnins ◽  
Juris Matvejs

One type of birch plywood production by-product: plywood sanding dust (PSD) and virgin polypropylene (PP) composites adhesive activity was investigated. To improve of the WP (PP+40 wt.% PSD) composites sheets as overlay bonding strength against birch plywood surface and water resistance of these laminated systems the industrially produced WPC material was modified with maleated polypropylene wax (MAPP) additives. These studies showed possibility of the usage of presented by-product as an excellent reinforcement for PP based wood plastic composites and addition of the coupling agent (MAPP) gives the considerable increase of adhesive activity of the used WPC. Due to the presence of MAPP (up to 4%) significantly increases not only adhesive strength of the laminates but also water resistance of the laminated sandwich specimens. As the example adhesive bonding strength could reach 2,74 N/mm2 and increases up to 4 times to compare with unmodified WPC adhesives.


Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 438 ◽  
Author(s):  
Pietro Russo ◽  
Libera Vitiello ◽  
Francesca Sbardella ◽  
Jose I. Santos ◽  
Jacopo Tirillò ◽  
...  

Four different strategies for mitigating the highly hydrophilic nature of flax fibers were investigated with a view to increase their compatibility with apolar polypropylene. The effects of two carbon nanostructures (graphene nanoplatelets (GNPs) and carbon nanotubes (CNTs)), of a chemical modification with a fatty acid (stearic acid), and of maleated polypropylene on interfacial adhesion, mechanical properties (tensile and flexural), and thermal stability (TGA) were compared. The best performance was achieved by a synergistic combination of GNPs and maleated polypropylene, which resulted in an increase in tensile strength and modulus of 42.46% and 54.96%, respectively, compared to baseline composites. Stearation proved to be an effective strategy for increasing the compatibility with apolar matrices when performed in an ethanol solution with a 0.4 M concentration. The results demonstrate that an adequate selection of surface modification strategies leads to considerable enhancements in targeted properties.


BioResources ◽  
2019 ◽  
Vol 14 (2) ◽  
pp. 4774-4791

Waste from the processing of hardwood and coniferous wood generated in the timber industries is difficult to dispose of and can cause considerable environmental impacts, such as soil and groundwater contamination. In this context, composites with varying concentrations of polypropylene, maleated polypropylene, and particulate Eucalyptus and Pinus waste were produced in a twin screw extruder and injection molded as test bodies for tensile and flexural tests. The morphology of the composites was investigated via scanning electron microscopy. The thermal properties were identified through differential scanning calorimetry. The tensile and flexural results for the two waste formulations indicated that the addition of vegetable fillers increased the modulus of elasticity and bending, and the compatibilizer provided increased resistance to stress and maximum deflection. The scanning electron micrographs illustrated the wetting of the cellulosic charge by the thermoplastic polymer with the compatibilizer, which corroborated the possible occurrence of an esterification reaction and hydrogen bonding interactions in the matrix-particle interface. The incorporation of waste in the composite resulted in the reduction of the degree of crystallinity of polypropylene, regardless of the use of the compatibilizer. This was explained by the barrier capacity of the charge, which prevented the growth of the crystals.


Sign in / Sign up

Export Citation Format

Share Document