Computational and experimental study on dynamics behavior of a bionic underwater robot with multi-flexible caudal fins

Author(s):  
Ou Xie ◽  
Boquan Li ◽  
Qin Yan

Purpose This paper aims to develop a novel type of bionic underwater robot (BUR) with multi-flexible caudal fins. With the coordinate movement of multi-caudal fins, BUR will combine the undulation propulsion mode of carangiform fish and jet propulsion mode of jellyfish together organically. The use of Computational Fluid Dynamics (CFD) and experimental method helps to reveal the effect of caudal fin stiffness and motion parameters on its hydrodynamic forces. Design/methodology/approach First, the prototype of BUR was given by mimicking the shape and propulsion mechanism of both carangiform fish and jellyfish. Besides, the kinematics models in both undulation and jet propulsion modes were established. Then, the effects of caudal fin stiffness on its hydrodynamic forces were investigated based on the CFD method. Finally, an experimental set-up was developed to test and verify the effects of the caudal fin stiffness on its hydrodynamic forces under different caudal fin actuation frequency and amplitude. Findings The results of this paper demonstrate that BUR with multi-flexible caudal fins combines the hydrodynamic characteristics of undulation and jet propulsion modes. In addition, the caudal fin with medium stiffness can generate larger thrust force and reduce the reactive power. Practical implications This paper implies that robotic fish can be equipped with both undulation and jet propulsion modes to optimize the swimming performance in the future. Originality/value This paper provides a BUR with multi-propulsion modes, which has the merits of high propulsion efficiency, high acceleration performance and overcome the head shaken problem effectively.

Robotica ◽  
2018 ◽  
Vol 36 (11) ◽  
pp. 1613-1626
Author(s):  
Ou Xie ◽  
Qixin Zhu ◽  
Lin Shen ◽  
Kun Ren

SUMMARYThis paper proposed a novel type of bionic underwater robot (BUR). The undulation and jet propulsion modes on the self-propelled BUR were combined, and the kinematic characteristics of the two propulsion modes were thoroughly compared. First, the prototype and swimming strategy of the BUR were presented, and a dynamic model of the BUR was established based on several assumptions. Then, a central pattern generator (CPG) model allowing free adjustment of frequency and amplitude was employed to achieve the undulation propulsion of carangiform fish and the jet propulsion of jellyfish. Also, the kinematic characteristics of the two propulsion modes were investigated through experiments under different caudal fin actuation parameters. The experimental results indicate that the developed prototype can realize the undulation and jet propulsion by the means of the coordinated movement of the multi-caudal fins. By adjusting the CPG parameters, the BUR can switch the propulsion mode smoothly. Furthermore, the propulsion velocity of the BUR initially increased rapidly with the frequency and then slowed down when the frequency was greater than 0.8 Hz in both propulsion modes. The undulation propulsion velocity increased with the amplitude in the measurement ranges, however, the jet propulsion velocity initially increased quickly with the amplitude and then kept constant and even decreased when the amplitude was greater than 11 cm. Under the same caudal fin actuation parameters, the average velocity in undulation propulsion mode was higher than that in jet propulsion mode.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yang Liu ◽  
Qingwei Gong ◽  
Yongning Bian ◽  
Qinghui Suo

PurposeHydrodynamic forces and efficiency of bare propeller and ducted propellers with a wide range of advance ratio (J) and attack angle (θ) are examined. The thrust and torque coefficients and the efficiency are presented and discussed in detail. The present results give a reliable guidance to the improvement of the hydrodynamic characteristics of ducted propellers.Design/methodology/approachThe effect of a duct on the hydrodynamic performance of the KP458 propeller is numerically investigated in this study. Finite volume method (FVM)-based simulations are performed for a wide range of advance ratio J (0 ≤ J ≤ 0.75) and attack angle θ of the duct (15° ≤ θ ≤ 45°). A cubic computational domain is employed in this study, and the moving reference frame (MRF) approach is adopted to handle the rotation of the propeller. Turbulence is accounted for with the RNG k-ε model. The present numerical results are first compared against available experimental data and a good agreement is achieved.FindingsThe simulation results demonstrate that the hydrodynamic forces and efficiency increases and decreases with J, respectively, at the same attack angle. In addition, it is demonstrated that the hydrodynamic forces and efficiency are both improved due to the presence of the duct, which eventually leads a better hydrodynamic performance at high advance ratios. It is further revealed that as the attack angle increases, the pressure difference between the suction- and pressure-surfaces of the propeller is also augmented, which results in a larger thrust. The wake field is more uniform at θ = 30°, suggesting that a higher efficiency can be obtained.Originality/valueThe present study aims to investigate the effect of a duct on the KP458 propeller subjected to uniform inbound flow. The relationship between the uniform incoming flow and the attack angle of the duct is mainly focused, and the design of the ducted propellers for any ship hull can be improved according to this relationship.


Author(s):  
Koosha Choobdari Omran ◽  
Ali Mosallanejad

Purpose Double rotor induction machine (DRIM) is a particular type of induction machine (IM) that has been introduced to improve the parameters of the conventional IM. The purpose of this study is to propose a dynamic model of the DRIM under saturated and unsaturated conditions by using the equations obtained in this paper. Also, skin and temperature effects are considered in this model. Design/methodology/approach First, the DRIM structure and its performance will be briefly reviewed. Then, to realize the DRIM model, the mathematical equations of the electrical and mechanical part of the DRIM will be presented by state equations in the q-d axis by using the Park transformation. In this paper, the magnetizing fluxes saturation is included in the DRIM model by considering the difference between the amplitudes of the unsaturated and saturated magnetizing fluxes. The skin and temperature effects are also considered in this model by correcting the rotor and stator resistances values during operation. Findings To evaluate the effects of the saturation and skin effects on DRIM performance and validate the model, the machine is simulated with/without consideration of saturation and skin effects by the proposed model. Then, the results, including torque, speed, stator and rotor currents, active and reactive power, efficiency, power factor and torque-speed characteristic, are compared. In addition, the performance of the DRIM has been investigated at different speed conditions and load variations. The proposed model is developed in Matlab/Simulink for the sake of validation. Originality/value This paper presents an understandable model of DRIM with and without saturation, which can be used to analyze the steady-state and transient behavior of the motor in different situations.


Author(s):  
Souhil Mouassa ◽  
Tarek Bouktir

Purpose In the vast majority of published papers, the optimal reactive power dispatch (ORPD) problem is dealt as a single-objective optimization; however, optimization with a single objective is insufficient to achieve better operation performance of power systems. Multi-objective ORPD (MOORPD) aims to minimize simultaneously either the active power losses and voltage stability index, or the active power losses and the voltage deviation. The purpose of this paper is to propose multi-objective ant lion optimization (MOALO) algorithm to solve multi-objective ORPD problem considering large-scale power system in an effort to achieve a good performance with stable and secure operation of electric power systems. Design/methodology/approach A MOALO algorithm is presented and applied to solve the MOORPD problem. Fuzzy set theory was implemented to identify the best compromise solution from the set of the non-dominated solutions. A comparison with enhanced version of multi-objective particle swarm optimization (MOEPSO) algorithm and original (MOPSO) algorithm confirms the solutions. An in-depth analysis on the findings was conducted and the feasibility of solutions were fully verified and discussed. Findings Three test systems – the IEEE 30-bus, IEEE 57-bus and large-scale IEEE 300-bus – were used to examine the efficiency of the proposed algorithm. The findings obtained amply confirmed the superiority of the proposed approach over the multi-objective enhanced PSO and basic version of MOPSO. In addition to that, the algorithm is benefitted from good distributions of the non-dominated solutions and also guarantees the feasibility of solutions. Originality/value The proposed algorithm is applied to solve three versions of ORPD problem, active power losses, voltage deviation and voltage stability index, considering large -scale power system IEEE 300 bus.


2016 ◽  
Vol 4 (3) ◽  
pp. 163-181
Author(s):  
Pouria Sarhadi ◽  
Reza Nad Ali Niachari ◽  
Morteza Pouyan Rad ◽  
Javad Enayati

Purpose The purpose of this paper is to propose a software engineering procedure for real-time software development and verification of an autonomous underwater robotic system. High performance and robust software are one of the requirements of autonomous systems design. A simple error in the software can easily lead to a catastrophic failure in a complex system. Then, a systematic procedure is presented for this purpose. Design/methodology/approach This paper utilizes software engineering tools and hardware-inthe-loop (HIL) simulations for real-time system design of an autonomous underwater robot. Findings In this paper, the architecture of the system is extracted. Then, using software engineering techniques a suitable structure for control software is presented. Considering the desirable targets of the robot, suitable algorithms and functions are developed. After the development stage, proving the real-time performance of the software is disclosed. Originality/value A suitable approach for analyzing the real-time performance is presented. This approach is implemented using HIL simulations. The developed structure is applicable to other autonomous systems.


2018 ◽  
Vol 30 (5) ◽  
pp. 859-871 ◽  
Author(s):  
Dan Xia ◽  
Wei-shan Chen ◽  
Jun-kao Liu ◽  
Xiang Luo

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Guijie Liu ◽  
Shuikuan Liu ◽  
Yingchun Xie ◽  
Dingxin Leng ◽  
Guanghao Li

In nature, fish not only have extraordinary ability of underwater movement but also have high mobility and flexibility. The low energy consumption and high efficiency of fish propulsive method provide a new idea for the research of bionic underwater robot and bionic propulsive technology. In this paper, the swordfish was taken as the research object, and the mechanism of the caudal fin propulsion was preliminarily explored by analyzing the flow field structure generated by the swing of caudal fin. Subsequently, the influence of the phase difference of the heaving and pitching movement, the swing amplitude of caudal fin, and Strouhal number (St number) on the propulsion performance of fish was discussed. The results demonstrated that the fish can obtain a greater propulsion force by optimizing the motion parameters of the caudal fin in a certain range. Lastly, through the mathematical model analysis of the tail of the swordfish, the producing propulsive force principle of the caudal fin and the caudal peduncle was obtained. Hence, the proposed method provided a theoretical basis for the design of a high-efficiency bionic propulsion system.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Wei Han ◽  
Teng Zhang ◽  
You Liang Su ◽  
Ran Chen ◽  
Yan Qiang ◽  
...  

In order to investigate the transient hydrodynamic characteristics of water-jet propulsion with a screw mixed pump during the startup period and to overcome the difficulties in measuring the transient process parameters over a very short period of time, a method based on a flume experiment combined with computational fluid dynamics (CFD) is proposed. The thrust and torque of the pump-jet propulsion according to mooring status at different rotational speeds were measured by the test, which provided a group of data for the boundary and initial conditions of the numerical calculation of the user-defined function (UDF). Consecutive changes in the parameters of the water-jet propulsion dynamics can be captured from the numerical simulation of the startup process with the UDF. Thus, the transient hydrodynamic characteristics of water-jet propulsion according to time or rotation speed were obtained. The results show that the relationship between the thrust or torque of the water-jet propeller and pump rotational speed is close to the quadratic functions. The energy characteristic parameters of screw mixed water-jet pump, such as the flow rate, head, shaft power, and efficiency, rapidly increase and decrease and then remain relatively stable.


Author(s):  
Yaxing Ren ◽  
Saqib Jamshed Rind ◽  
Lin Jiang

PurposeA standalone microgrid (MG) is able to use local renewable resources and reduce the loss in long distance transmission. But the single-phase device in a standalone MG can cause the voltage unbalance condition and additional power loss that reduces the cycle life of battery. This paper proposes an energy management strategy for the battery/supercapacitor (SC) hybrid energy storage system (HESS) to improve the transient performance of bus voltage under unbalanced load condition in a standalone AC microgrid (MG).Design/methodology/approachThe SC has high power density and much more cycling times than battery and thus to be controlled to absorb the transient and unbalanced active power as well as the reactive power under unbalanced condition. Under the proposed energy management design, the battery only needs to generate balanced power to balance the steady state power demand. The energy management strategy for battery/SC HESS in a standalone AC MG is validated in simulation study using PSCAD/EMTDC.FindingsThe results show that the energy management strategy of HESS maintains the bus voltage and eliminates the unbalance condition under single-phase load. In addition, with the SC to absorb the reactive power and unbalanced active power, the unnecessary power loss in battery is reduced with shown less accumulate depth of discharge and higher average efficiency.Originality/valueWith this technology, the service life of the HESS can be extended and the total cost can be reduced.


Sign in / Sign up

Export Citation Format

Share Document