Life cycle cost analysis of a computerized numerical control machine tool: a case study from Indian manufacturing industry

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Rajkumar Bhimgonda Patil ◽  
Basavraj S. Kothavale ◽  
Laxman Yadu Waghmode ◽  
Michael Pecht

PurposeLife cycle cost (LCC) analysis is one of the key parameters in designing a sustainable product or system. The application of life cycle costing in the manufacturing industries is still limited due to several factors. Lack of understanding of LCC analysis methodologies is one of the key barriers. This paper presents a generalized framework for LCC analysis of repairable systems using reliability and maintainability principles.Design/methodology/approachThe developed LCC analysis framework and stochastic point processes are applied for the analysis of a typical computerized numerical control turning center (CNCTC) and governing equations for acquisition cost, operation cost, failure cost, support cost and net salvage value are developed. The LCC of the CNCTC is evaluated for the renewal process (RP) and minimal repair process (MRP) approach.FindingsThe LCC analysis of the CNCTC reveals that, the acquisition cost is only 7.59% of the LCC, whereas the operation, failure and support costs dominate and contribute nearly 93% of the LCC. The LCC per day for RP requires additional US$ 1.03 than that for MRP. The detailed LCC analysis of the CNCTC identifies the critical components of CNCTC and these components are: spindle motor, spindle motor cooling fan, spindle belt, drawbar, spindle bearing, oil seals, hydraulic hose, solenoid valve, tool holder, lubrication pump motor system, lubrication hose, coolant pump motor system, coolant hose, supply cables, drive battery.Originality/valueThe developed framework of LCC of a repairable system can be applied to any other repairable systems with the appropriate modifications. LCC analysis of CNCTC reveals that the procurement decision of a product or system should be based on LCC and not only on the acquisition cost. The optimum utilization of consumables such as cutting tools, coolant, oil and lubricant can save operation cost. Thus, use of high-efficiency electric motors and the usage of recommended consumables can prolong the life of several components of a system. Therefore, due consideration and attention to these parameters at product design stage itself will decrease failure and support cost and ultimately its LCC.

2017 ◽  
Vol 34 (9) ◽  
pp. 1616-1638 ◽  
Author(s):  
Rajkumar Bhimgonda Patil ◽  
Basavraj S. Kothavale ◽  
Laxman Yadu Waghmode ◽  
Shridhar G. Joshi

Purpose The paper presents reliability, maintainability and life cycle cost (LCC) analysis of a computerized numerical control (CNC) turning center which is manufactured and used in India. The purpose of this paper is to identify the critical components/subsystems from reliability and LCC perspective. The paper further aims at improving reliability and LCC by implementing reliability-improvement methods. Design/methodology/approach This paper uses a methodology for the reliability analysis based on the assessment of trends in maintenance data. The data required for reliability and LCC analysis are collected from the manufacturers and users of CNC turning center over a period of eight years. ReliaSoft’s Weibull++9 software has been used for verifying goodness of fit and estimating parameters of the distribution. The LCC of the system is estimated for five cost elements: acquisition cost, operation cost, failure cost, support cost and net salvage value. Findings The analysis shows that the spindle bearing, spindle belt, spindle drawbar, insert, tool holder, drive battery, hydraulic hose, lubricant hose, coolant hose and solenoid valve are the components with low reliability. With certain design changes and implementation of reliability-based maintenance policies, system reliability is improved, especially during warranty period. The reliability of the CNC turning center is improved by nearly 45 percent at the end of warranty period and system mean time between failure is increased from 15,000 to 17,000 hours. The LCC analysis reveals that the maintenance cost, operating cost and support costs dominate the LCC and contribute to the tune of 87 percent of the total LCC. Research limitations/implications The proposed methodology provides an excellent tool that can be utilized in industries, where safety, reliability, maintainability and availability of the system play a vital role. The approach may be improved by collecting data from more number of users of the CNC turning centers. Practical implications The approach presented in this paper is generic and can be applied to analyze the repairable systems. A real case study is presented to show the applicability of the approach. Originality/value The proposed methodology provides a practical approach for the analysis of time-to-failure and time-to-repair data based on the assessment of trends in the maintenance data. The methodology helps in selecting a proper approach of the analysis such as Bayesian method, parametric methods and nonparametric methods.


Author(s):  
Z. H. Jiang ◽  
L. H. Shu ◽  
B. Benhabib

Abstract This paper approaches environmentally conscious design by further developing a reliability model that facilitates design for reuse. Many reliability models are not suitable for describing systems that undergo repairs performed during remanufacture and maintenance because the models do not allow the possibility of system reconfiguration. In this paper, expressions of reliability indices of a model that allows system reconfiguration are developed to enable life-cycle cost estimation for repairable systems. These reliability indices of a population of repairable systems are proven theoretically to reach steady state. The expressions of these indices at steady state are obtained to gain insight into the model behavior, and to facilitate life-cycle cost estimation.


2020 ◽  
Vol 20 (2) ◽  
pp. 191-207 ◽  
Author(s):  
Muhammad Waseem Khan ◽  
Yousaf Ali

Purpose The change in climate and depletion of natural resources because of the harmful emissions from different materials becomes a main issue for the globe. Some of the developed and developing countries have focused on this issue and performed research to provide a solution. The purpose of this study is to identify the best types of concrete based on its impact on the environment and economy. Design/methodology/approach The life cycle assessment and life cycle cost analysis of six concrete mixtures that include construction and demolition wastes (CDW), marble sludge, rice husk and bagasse ash as a partial replacement of cement, are performed. These types of concrete are compared with each other and with ordinary concrete to select the best possible concrete type for a developing country, like Pakistan. Findings The results show that, although for an agricultural country like Pakistan, the agriculture wastes such as rice husk and bagasse ash are preferable to be used, if the emissions of CO2 and CO from rice husk and NOx and SO2 from bagasse ash are properly controlled. However, based on the results, it is recommended to use the CDW in concrete because of the small amount of air emissions and affordable prices. Originality/value Through this study, a path has been provided to construction companies and relative government organizations of Pakistan, which leads to sustainable practices in the construction industry. Moreover, the base is provided for future researchers who want to work in this area, as for Pakistan, there is no database available that helps to identify the impact of different concrete on the environment.


2018 ◽  
Vol 23 (2) ◽  
pp. 170-184 ◽  
Author(s):  
Nayanthara De Silva ◽  
Nilmini Weerasinghe ◽  
H.W.N. Madhusanka ◽  
Mohan Kumaraswamy

Purpose The purpose of this paper is to identify enablers for setting up relationally integrated value networks (RIVANS) for total facilities management (TFM) as a holistic approach to bridge the Project Management (PM) phase to the facilities management (FM) phase, aiming for better service delivery while optimizing the life-cycle cost. These enablers are proposed as required driving forces for the industry to bridge current gaps through RIVANS for TFM so as to improve the value of the facility and deliver better value to its stakeholders over its life span. Design/methodology/approach A literature review elicited 11 typical better values that could be achieved by suitably linking the PM and FM supply chains in general. While these were tested in parallel research exercises in Hong Kong, the UK and Singapore, this paper reports on the specific findings from Sri Lanka, where a Web-based questionnaire survey was conducted to identify potential better values for proposed relational networks (including the clients, consultants, contractors and suppliers in the supply chain). Better values were then clustered under principal domains/components using factor analysis to establish synergetic enablers. Findings In total, 11 significant better values for TFM were identified and four enablers were extracted as building long-term integrated networks, establishing a common resource pool linking PM and FM, enhancing sustainability of TFM and developing a similar protocol between PM and FM. Originality/value The study carried out in this paper contributes to knowledge by identifying drivers to bridge the gap between PM and FM to best achieve clients’ long-term aspirations through a holistic life-cycle approach. Furthermore, all stakeholders in TFM can revisit their practices to establish and strengthen the identified enablers.


2016 ◽  
Vol 33 (3) ◽  
pp. 414-429 ◽  
Author(s):  
Laxman Yadu Waghmode ◽  
Rajkumar Bhimgonda Patil

Purpose – Reliability analysis is required to identify the components or subsystems with low reliability for a given designed performance. Life cycle cost analysis helps understand the cost implications over the entire life span of a product. The purpose of this paper is to present a case study describing reliability analysis and life cycle cost optimization of a band saw cutting machine manufactured and used in India. Design/methodology/approach – The data required for reliability analysis is collected from the manufacturer and users of band saw cutting machine. The parameters of failure distribution have been estimated by using ReliaSoft’s Weibull++6 software. The life cycle cost is divided into various cost elements such as acquisition cost, operation cost, failure cost, support cost and net salvage value. Findings – The results of the analysis show that the components such as band wheel bearing, guide roller bearing, limit switch, carbide pad, hydraulic cylinder oil seal, control panel dial, control panel and solenoid valve are critical from reliability and life cycle cost analysis perspective. Originality/value – With certain design changes it is found that the reliability of the system is increased by 15.85 percent while the life cycle cost is reduced by 22.09 percent. The study also shows that the reliability analysis is useful for deciding maintenance intervals.


2016 ◽  
Vol 14 (4) ◽  
pp. 818-834 ◽  
Author(s):  
Ayedh Alqahtani ◽  
Andrew Whyte

Purpose This paper aims to identify the main non-cost factors affecting accurate estimation of life cycle cost (LCC) in building projects. Design/methodology/approach Ten factors affecting LCC in building project cost estimates are identified through literature and interviews. A questionnaire survey is conducted to rank these factors in order of priority and provide the views of cost practitioners about the significance of these factors in the accurate estimation of LCC. The data from 138 construction building projects completed in UK were collected and analysed via multiple regression to discover the relationship between capital and LCCs and between non-cost factors and cost estimation at each stage of the life cycle (capital, operation, maintenance and LCC). Findings The results of analysis of existing LCC data of completing project and survey data from cost professionals are mostly consistent with many literature views and provide a reasonable description of the non-cost factors affecting the accuracy of estimates. Originality/value The value of this study is in the method used, which involves analysis of existing life data and survey data from cost professionals. The results provide a plausible description of the non-cost factors affecting the accuracy of estimates.


1979 ◽  
Vol 23 (1) ◽  
pp. 334-338
Author(s):  
Richard E. Vestewig ◽  
F. Thomas Eggemeier

Life cycle cost estimates were developed for use of simulated test equipment vs actual test equipment in a maintenance training program of the type used for current advanced fighter aircraft. Previous life cycle cost comparisons had not explicitly considered the cost implications of procurement and support of a unique training device vs an incremental device. This effort included the unique vs the incremental device factor. Total estimated fifteen year costs for simulated equipment trainers were significantly lower than comparable estimates for actual equipment trainers. The results indicate that the cost implications of a unique device vs an incremental device are important determinants of both acquisition and support cost estimates and should be considered fully in future life cycle costing efforts.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Oussama Adjoul ◽  
Khaled Benfriha ◽  
Améziane Aoussat

PurposeThis paper proposes a new simultaneous optimization model of the industrial systems design and maintenance. This model aims to help the designer in searching for technical solutions and the product architecture by integrating the maintenance issues from the design stage. The goal is to reduce the life-cycle cost (LCC) of the studied system.Design/methodology/approachLiterature indicates that the different approaches used in the design for maintenance (DFM) methods are limited to the simultaneous characterization of the reliability and the maintainability of a multicomponent system as well as the modeling of the dynamic maintenance. This article proposes to go further in the optimization of the product, by simultaneously characterizing the design, in terms of reliability and maintainability, as well as the dynamic planning of the maintenance operations. This combinatorial characterization is performed by a two-level hybrid algorithm based on the genetic algorithms.FindingsThe proposed tool offers, depending on the life-cycle expectation, the desired availability, the desired business model (sales or rental), simulations in terms of the LCCs, and so an optimal product architecture.Research limitations/implicationsIn this article, the term “design” is limited to reliability properties, possible redundancies, component accessibility (maintainability), and levels of monitoring information.Originality/valueThis work is distinguished by the use of a hybrid optimization algorithm (two-level computation) using genetic algorithms. The first level is to identify an optimal design configuration that takes into account the LCC criterion. The second level consists in proposing a dynamic and optimal maintenance plan based on the maintenance-free operating period (MFOP) concept that takes into account certain criteria, such as replacement costs or the reliability of the system.


2019 ◽  
Vol 9 (3) ◽  
pp. 440-456
Author(s):  
Seyed Ehsan Zahed ◽  
Sirwan Shahooei ◽  
Ferika Farooghi ◽  
Mohsen Shahandashti ◽  
Siamak Ardekani

Purpose The purpose of this paper is to conduct life-cycle cost analysis of a short-haul underground freight transportation (UFT) system for the Dallas Fort Worth international airport. Design/methodology/approach The research approach includes: identifying the cost components of the proposed airport UFT system; estimating life-cycle cost (LCC) of system components using various methods; determining life-cycle cash flows; evaluating the reliability of the results using sensitivity analysis; and assessing the validity of the results using analogues cases. Findings Although the capital cost of constructing an airport UFT system seems to be the largest cost of such innovative projects, annual costs for running the system are more significant, taking a life-cycle perspective. System administrative cost, tunnel operation and maintenance, and tunnel construction cost are the principle cost components of the UFT system representing approximately 46, 24 and 19 percent of the total LCC, respectively. The shipping cost is estimated to be $4.14 per ton-mile. Although this cost is more than the cost of transporting cargos by trucks, the implementation of UFT systems could be financially justified considering their numerous benefits. Originality/value This paper, for the first time, helps capital planners understand the LCC of an airport UFT system with no or limited past experience, and to consider such innovative solutions to address airport congestion issues.


2019 ◽  
Vol 26 (6) ◽  
pp. 927-944 ◽  
Author(s):  
Kishor Shrestha ◽  
Pramen P. Shrestha ◽  
Mylinh Lidder

Purpose To maintain road systems in the USA, state departments of transportation (DOTs) generally use in-house workers or private contractors. Limited studies have calculated the cost savings of hiring private contractors; however, most of them have not calculated cost savings based on life-cycle costs (LCCs). The purpose of this paper is to determine whether the LCC of chip seal and stripping maintenance activities performed by in-house workers are cheaper than those performed by private contractors. Design/methodology/approach The paper collected the hard cost data of chip seal and stripping maintenance activities performed by state DOT in-house workers, as well as private contractors, from 2003 to 2016 from the Nevada DOT Maintenance and Asset Management division. Statistical tests were conducted to test the research hypothesis that the LCC of chip seal and stripping activities performed by in-house workers are significantly less than those performed by private contractors. Findings The study results showed that the cost per unit and LCC of chip seal and striping work performed by in-house workers were significantly less than those performed by private contractors in Nevada. Research limitations/implications The study only collected data from Nevada DOT, so readers should use caution in generalizing the findings of this study. Additionally, factors affecting the cost of these maintenance activities for private contractors are significantly different compared to in-house contractors. Therefore, these differences may be some of the potential reasons for cost difference between these two methods. Practical implications The practical implications of this study are that state DOT engineers need to plan for outsourcing chip seal and stripping maintenance activities only to private contractors that are cost effective, based on life-cycle cost. Originality/value The LCC analysis framework developed in this study will help state DOT engineers to determine cost savings by using in-house workers for road maintenance works.


Sign in / Sign up

Export Citation Format

Share Document