Extension of the Zone Method of Eurocode 2 for reinforced concrete columns subjected to standard fire

2016 ◽  
Vol 7 (2) ◽  
pp. 82-96 ◽  
Author(s):  
Marcus Achenbach ◽  
Guido Morgenthal

Purpose The purpose of this paper is to develop a method suitable for the design of reinforced concrete columns subjected to a standard fire. Design/methodology/approach The Zone Method – a ’simplified calculation method” included in Eurocode 2 – has been developed by Hertz as a manual calculation scheme for the check of fire resistance of concrete sections. The basic idea is to disregard the thermal strains and to calculate the resistance of a cross-section by reducing the concrete cross-section by a “damaged zone”. It is assumed that all fibers can reach their ultimate, temperature dependent strength. Therefore, it is a plastic concept; the information on the state of strain is lost. The calculation of curvatures and deflections is thus only possible by making further assumptions. Extensions of the zone method toward a general calculation method, suitable for the implementation in commercial design software and using the temperature dependent stress–strain curves of the Advanced Calculation Method, have been developed in Germany. The extension by Cyllok and Achenbach is presented in detail. The necessary assumptions of the Zone Method are reviewed, and an improved proposal for the consideration of the reinforcement in this extended Zone Method is presented. Findings The principles and assumptions of the Zone Method proposed by Hertz can be validated. Originality/value An extension of the Zone Method suitable for the implementation in design software is proposed.

2015 ◽  
Vol 797 ◽  
pp. 45-52
Author(s):  
Krzysztof Kamiński ◽  
Katarzyna Budek

The aim of this paper is to provide a solution for easy calculations of reinforced concrete with biaxial bending cross-section. The paper presents in an orderly manner basic definitions related to the discussed topics, to the extent necessary to understand the discussed issues. As a result of the computational analysis dozens of sections with biaxial bending, there was developed a table and a chart containing the correction factor for bending moments, allowing to obtain the correct bearing capacity of cross-section, subjected to biaxial bending. This work presents proposition for a new, own calculation method of such cross-section. Calculations were made according to PN-EN 1992-1-1:2008, Eurocode 2, Design of concrete structures. Part 1-1: General rules and rules for buildings, using algorithms based on simplified methods. According to carried out calculations, cross-section dimensioning compressed with biaxial eccentricities separately on each side and values of bending moments should be increased to maintain cross-section's bearing capacity. The coefficient K scaling moments was determined as a function of eccentricity ey. With the increase of eccentricity, the coefficient K decreases.


2020 ◽  
Vol 11 (4) ◽  
pp. 529-543
Author(s):  
Anjaly Nair ◽  
Osama (Sam) Salem

Purpose At elevated temperatures, concrete undergoes changes in its mechanical and thermal properties, which mainly cause degradation of strength and eventually may lead to the failure of the structure. Retrofitting is a desirable option to rehabilitate fire damaged concrete structures. However, to ensure safe reuse of fire-exposed buildings and to adopt proper retrofitting methods, it is essential to evaluate the residual load-bearing capacity of such fire-damaged reinforced concrete structures. The focus of the experimental study presented in this paper aims to investigate the fire performance of concrete columns exposed to a standard fire, and then evaluate its residual compressive strengths after fire exposure of different durations. Design/methodology/approach To effectively study the fire performance of such columns, eight identical 200 × 200 × 1,500-mm high reinforced concrete columns test specimens were subjected to two different fire exposure (1- and 2-h) while being loaded with two different load ratios (20% and 40% of the column ultimate design axial compressive load). In a subsequent stage and after complete cooling down, residual compressive strength capacity tests were performed on each fire exposed column. Findings Experimental results revealed that the columns never regain its original capacity after being subjected to a standard fire and that the residual compressive strength capacity dropped to almost 50% and 30% of its ambient temperature capacity for the columns exposed to 1- and 2-h fire durations, respectively. It was also noticed that, for the tested columns, the applied load ratio has much less effect on the column’s residual compressive strength compared to that of the fire duration. Originality/value According to the unique outcomes of this experimental study and, as the fire-damaged concrete columns possessed considerable residual compressive strength, in particular those exposed to shorter fire duration, it is anticipated that with proper retrofitting techniques such as fiber-reinforced polymers (FRP) wrapping, the fire-damaged columns can be rehabilitated to regain at least portion of its lost load-bearing capacities. Accordingly, the residual compressive resistance data obtained from this study can be effectively used but not directly to adopt optimal retrofitting strategies for such fire-damaged concrete columns, as well as to be used in validating numerical models that can be usefully used to account for the thermally-induced degradation of the mechanical properties of concrete material and ultimately predict the residual compressive strengths and deformations of concrete columns subjected to different load intensity ratios for various fire durations.


Author(s):  
Marcus Achenbach ◽  
Guido Morgenthal

The Advanced Calculation Method given in EN 1992-1-2 is accepted by engineers and building authorities for the determination of the fire resistance of reinforced concrete structures. It has been developed originally for the recalculation of laboratory tests: the time of failure is calculated for a given layout of reinforcement. But in the structural analysis of concrete columns, the area of reinforcement has to be calculated for a desired fire resistance. Design methods and strategies, which are suitable for the design of concrete compression members, require constant material properties and strain limits, which are not given for the Advanced Calculation Method. Therefore Achenbach and Morgenthal have proposed an extension of the Zone Method by Hertz, suitable for the implementation in commercial design software. In this paper, this Extended Zone Method is used to recalculate laboratory tests to determine the accuracy of this method. A statistical analysis of the results is performed to evaluate the statistical key data of the Extended Zone Method.


Author(s):  
Л. Р. Маилян ◽  
С. А. Стельмах ◽  
Е. М. Щербань ◽  
М. П. Нажуев

Состояние проблемы. Железобетонные элементы изготавливаются, как правило, по трем основным технологиям - вибрированием, центрифугированием и виброцентрифугированием. Однако все основные расчетные зависимости для определения их несущей способности выведены, исходя из основного постулата - постоянства и равенства характеристик бетона по сечению, что реализуется лишь в вибрированных колоннах. Результаты. В рамках диаграммного подхода предложены итерационный, приближенный и упрощенный способы расчета несущей способности железобетонных вибрированных, центрифугированных и виброцентрифугированных колонн. Выводы. Расчет по диаграммному подходу показал существенно более подходящую сходимость с опытными данными, чем расчет по методике норм, а также дал лучшие результаты при использовании дифференциальных характеристик бетона, чем при использовании интегральных и, тем более, нормативных характеристик бетона. Statement of the problem. Reinforced concrete elements are typically manufactured according to three basic technologies - vibration, centrifugation and vibrocentrifugation. However, all the basic calculated dependencies for determining their bearing capacity were derived using the main postulate, i.e., the constancy and equality of the characteristics of concrete over the cross section, which is implemented only in vibrated columns. Results. Within the framework of the diagrammatic approach, iterative, approximate and simplified methods of calculating the bearing capacity of reinforced concrete vibrated, centrifuged and vibrocentrifuged columns are proposed. Conclusions. The calculation according to the diagrammatic approach showed a significantly better convergence with the experimental data than that using the method of norms, and also performs better when using differential characteristics of concrete than when employing integral and particularly standard characteristics of concrete.


2016 ◽  
Vol 9 (1) ◽  
pp. 1-21 ◽  
Author(s):  
D. B. FERREIRA ◽  
R. B. GOMES ◽  
A. L. CARVALHO ◽  
G. N. GUIMARÃES

This article presents the study of reinforced concrete columns strengthened using a partial jacket consisting of a 35mm self-compacting concrete layer added to its most compressed face and tested in combined compression and uniaxial bending until rupture. Wedge bolt connectors were used to increase bond at the interface between the two concrete layers of different ages. Seven 2000 mm long columns were tested. Two columns were cast monolithically and named PO (original column) e PR (reference column). The other five columns were strengthened using a new 35 mm thick self-compacting concrete layer attached to the column face subjected to highest compressive stresses. Column PO had a 120mm by 250 mm rectangular cross section and other columns had a 155 mm by 250mm cross section after the strengthening procedure. Results show that the ultimate resistance of the strengthened columns was more than three times the ultimate resistance of the original column PO, indicating the effectiveness of the strengthening procedure. Detachment of the new concrete layer with concrete crushing and steel yielding occurred in the strengthened columns.


2015 ◽  
Vol 8 (2) ◽  
pp. 88-99
Author(s):  
M. G. Marques ◽  
A. P. A. R. Liserre ◽  
R. B. Gomes ◽  
G. N. Guimarães

Strengthening of reinforced concrete columns by jacketing is one of the most common structural rehabilitation techniques in Brazil. For adequate performance, it is necessary, among others, to avoid detachment of the new concrete layer (strengthening material) from the old concrete substrate when the strengthened member is again in service conditions. This paper describes the test results of eight reinforced concrete rectangular columns subjected to combined compression and one-axis bending to evaluate the efficiency of using sleeve wedge bolts across the new concrete/old concrete interface to avoid detachment. The strengthening technique, in this case, consists of adding a layer of self-compacting concrete to one face of the column. Two columns tested were monolithic and named PO (original column) e PR (reference column). The other six columns were strengthened using a new 35 mm thick self-compacting concrete layer attached to the column face subjected to highest compressive stresses. Column PO had a 120mm by 250 mm rectangular cross section and its results gave information about column behavior without the use of strengthening. Column PR had a 155mm by 250 mm rectangular cross section and its cross section dimensions matched the strengthened columns but it was cast monolithically. To improve bond conditions between the existing concrete and the new concrete, the concrete surface was roughened and the outermost aggregate was exposed using hydro jetting. Holes along the concrete surface were made to insert the wedge bolts responsible for increasing the bond between the two concrete surfaces. The difference among the six strengthened columns was the position and amount of bolts used. Results indicate that the position and amount of the bolts alters significantly the strength capacity of the columns, since premature rupture by concrete detachment was delayed.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1594
Author(s):  
Umut Hasgul

In this study, the response quantities affecting the equivalent yield curvature, which is important in the deformation-based seismic design and assessment of structural systems, are investigated for reinforced concrete columns with a square cross-section. In this context, the equivalent yield curvatures were determined by conducting moment–curvature analyses on various column models, in which the axial load level, cross-section dimension, longitudinal reinforcement ratio, and concrete compression strength were changed parametrically, and the independent and/or combined effects of the relevant parameters were discussed. Depending on the axial load levels of P/Agfc′ < 0.3, P/Agfc′ = 0.3, and P/Agfc′ > 0.3 for the considered columns, the yielding of reinforcement, yielding of reinforcement and/or concrete crushing, and concrete crushing governed the yield conditions, respectively. It can be noted that the cross-section dimension and axial load level became the primary parameters. Even though the independent effects with regard to particular parameters remained at minimal levels, the combined effects of them with the axial load became important in terms of the equivalent yield curvature.


2013 ◽  
Vol 8 (2) ◽  
pp. 41-50
Author(s):  
Štefan Gramblička ◽  
Peter Veróny

Abstract In the article we are dealing with the influence of transverse reinforcement to the resistance of a cross-section of the reinforced concrete columns and also with the effective detailing of the column reinforcement. We are verifying the correctness of design guides for detailing of transverse reinforcement. We are also taking into account the diameter of stirrups and its influence over transverse deformation of column.


2018 ◽  
Vol 8 (1) ◽  
pp. 4-9
Author(s):  
Sergey S. MORDOVSKY ◽  
Rustam I. DAVLIKAMOV

Theoretical studies of reinforced concrete eccentrically compressed columns of circular cross-section on strength indexes are analyzed. These studies rely on the use of a nonlinear deformation model that approximates the work of concrete to real experimental conditions. A comparative analysis of the results of calculating the strength of reinforced concrete columns of circular cross-section is carried out according to the methodology proposed in the current set of rules, is the author’s program for determining the stress-strain state of a reinforced concrete column of circular cross-section implemented in the MathCad software environment. The results of a numerical experiment are compared in the form of a fi nite-element model in the Lira-CAD program complex using a nonlinear deformation model. Calculations and schemes are given taking into account the possibility of conducting an experimental study.


Sign in / Sign up

Export Citation Format

Share Document