Estimation of salt intake of normotensive subjects of Jaipur City

2016 ◽  
Vol 46 (6) ◽  
pp. 766-777 ◽  
Author(s):  
Sonal Dhemla ◽  
Kanika Varma

Purpose There has been a dramatic increase in hypertension in developing countries along with changes in food consumption patterns contributing to higher levels of sodium. Evidence shows that a high level of sodium intake is a major cause of high blood pressure and other heart diseases along with other associated diseases. Therefore, it is important to determine current consumption levels of sodium in a population to facilitate the development and implementation of any specific salt reduction program. Design/methodology/approach The study was conducted among 60 subjects (25-45 years) residing in Jaipur City. Subjects’ sodium consumption levels were assessed via assessment of 24-h urinary sodium excretion levels, the “gold standard” method advocated by WHO/PAHO (2010) and 24-h dietary recall for three days including one holiday. Findings The findings of the study indicated that the subjects were found to be consuming higher levels of sodium (males, 5,792 mg/d; females, 5,911 mg/d) than recommended by WHO, i.e. less than 2,300 mg/d. Completeness of urine was confirmed by fat-free mass determined by electrical bio-impedance (47.6 ± 7.6 kg) and determined by using 24-h urinary excretion of creatinine (33.7 ± 10.1 kg). Two variables were found to be significantly correlated (r = 0.52, p = 0.00). Assuming that the sodium eliminated in the urine comes from the salt only, this excretion would correspond with a dietary salt intake of 14.71 and 15.01 g/d in males and females, respectively. Dietary sodium intake was reported to be 4,133 ± 1,111 mg/day and 3,953 ± 945 mg/d in males and females, respectively. A non-significant difference was found between the two variables. Urinary sodium excretion correlated non-significantly with systolic and diastolic blood pressure figures (r = 0.09 and r = −0.02, respectively). Research limitations/implications The limitations of this study included the small sample size. Purposive sampling was adopted due to difficulty in obtaining urine sample and required willingness of the respondent. This may give fair robust estimate. Originality/value The present results will help provide new data about the baseline salt intake in young and middle-aged population of Jaipur City and will further help the concerned agencies to plan meaningful strategies to reduce salt intake, and it must involve public education and awareness to change the consumption pattern.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaofu Du ◽  
Le Fang ◽  
Jianwei Xu ◽  
Xiangyu Chen ◽  
Yamin Bai ◽  
...  

AbstractThe direction and magnitude of the association between sodium and potassium excretion and blood pressure (BP) may differ depending on the characteristics of the study participant or the intake assessment method. Our objective was to assess the relationship between BP, hypertension and 24-h urinary sodium and potassium excretion among Chinese adults. A total of 1424 provincially representative Chinese residents aged 18 to 69 years participated in a cross-sectional survey in 2017 that included demographic data, physical measurements and 24-h urine collection. In this study, the average 24-h urinary sodium and potassium excretion and sodium-to-potassium ratio were 3811.4 mg/day, 1449.3 mg/day, and 4.9, respectively. After multivariable adjustment, each 1000 mg difference in 24-h urinary sodium excretion was significantly associated with systolic BP (0.64 mm Hg; 95% confidence interval [CI] 0.05–1.24) and diastolic BP (0.45 mm Hg; 95% CI 0.08–0.81), and each 1000 mg difference in 24-h urinary potassium excretion was inversely associated with systolic BP (− 3.07 mm Hg; 95% CI − 4.57 to − 1.57) and diastolic BP (− 0.94 mm Hg; 95% CI − 1.87 to − 0.02). The sodium-to-potassium ratio was significantly associated with systolic BP (0.78 mm Hg; 95% CI 0.42–1.13) and diastolic BP (0.31 mm Hg; 95% CI 0.10–0.53) per 1-unit increase. These associations were mainly driven by the hypertensive group. Those with a sodium intake above about 4900 mg/24 h or with a potassium intake below about 1000 mg/24 h had a higher risk of hypertension. At higher but not lower levels of 24-h urinary sodium excretion, potassium can better blunt the sodium-BP relationship. The adjusted odds ratios (ORs) of hypertension in the highest quartile compared with the lowest quartile of excretion were 0.54 (95% CI 0.35–0.84) for potassium and 1.71 (95% CI 1.16–2.51) for the sodium-to-potassium ratio, while the corresponding OR for sodium was not significant (OR, 1.28; 95% CI 0.83–1.98). Our results showed that the sodium intake was significantly associated with BP among hypertensive patients and the inverse association between potassium intake and BP was stronger and involved a larger fraction of the population, especially those with a potassium intake below 1000 mg/24 h should probably increase their potassium intake.


Hypertension ◽  
2017 ◽  
Vol 70 (suppl_1) ◽  
Author(s):  
Tomoko Hashimoto

Although the daily urinary sodium excretion (UNaV) is considered to provide the most reliable estimate of the daily sodium intake, it may be affected by salt loss due to sweating in summer. However, theseasonal variation in the daily UNaV associated with a normal lifestyle is unknown. This study was performed in 348 outpatients from the Morioka region during three seasons: summer(summer 1), winter, and the following summer (summer 2). The daily UNaV (g salt/day) was estimated by the second morning urine method three times during each season. Seasonal variation was defined as a significant trend across the three seasons together with a significant difference between winter and both summers. In women, the daily UNaV was higher in winter (11.8±3.0 g salt/day) than in summer 1 (11.2±2.9g salt/day) or summer 2 (11.0±2.9 g salt/day). In contrast, there was no marked seasonal variation in men. An analysis stratified by age (4 quartiles) identified seasonal variation in the older 2 quartiles of women (aged ≧68 years). In these women, the mean seasonal difference in the daily UNaV was 0.9 g of salt/day for both winter vs. summer 1 and winter vs. summer 2, while it was 0.1-0.8 g of salt/day in the other groups. Seasonal variation in the daily UNaV only occurred in older female patients and was relatively small. This is evidence for restricting salt intake throughout the year and should reassure patients who are anxious about salt loss due to sweating in summer.


2018 ◽  
Vol 148 (12) ◽  
pp. 1946-1953 ◽  
Author(s):  
Magali Rios-Leyvraz ◽  
Pascal Bovet ◽  
René Tabin ◽  
Bernard Genin ◽  
Michel Russo ◽  
...  

ABSTRACT Background The gold standard to assess salt intake is 24-h urine collections. Use of a urine spot sample can be a simpler alternative, especially when the goal is to assess sodium intake at the population level. Several equations to estimate 24-h urinary sodium excretion from urine spot samples have been tested in adults, but not in children. Objective The objective of this study was to assess the ability of several equations and urine spot samples to estimate 24-h urinary sodium excretion in children. Methods A cross-sectional study of children between 6 and 16 y of age was conducted. Each child collected one 24-h urine sample and 3 timed urine spot samples, i.e., evening (last void before going to bed), overnight (first void in the morning), and morning (second void in the morning). Eight equations (i.e., Kawasaki, Tanaka, Remer, Mage, Brown with and without potassium, Toft, and Meng) were used to estimate 24-h urinary sodium excretion. The estimates from the different spot samples and equations were compared with the measured excretion through the use of several statistics. Results Among the 101 children recruited, 86 had a complete 24-h urine collection and were included in the analysis (mean age: 10.5 y). The mean measured 24-h urinary sodium excretion was 2.5 g (range: 0.8–6.4 g). The different spot samples and equations provided highly heterogeneous estimates of the 24-h urinary sodium excretion. The overnight spot samples with the Tanaka and Brown equations provided the most accurate estimates (mean bias: −0.20 to −0.12 g; correlation: 0.48–0.53; precision: 69.7–76.5%; sensitivity: 76.9–81.6%; specificity: 66.7%; and misclassification: 23.0–27.7%). The other equations, irrespective of the timing of the spot, provided less accurate estimates. Conclusions Urine spot samples, with selected equations, might provide accurate estimates of the 24-h sodium excretion in children at a population level. At an individual level, they could be used to identify children with high sodium excretion. This study was registered at clinicaltrials.gov as NCT02900261.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
J Carter ◽  
F Re ◽  
I Hammami ◽  
T Littlejohns ◽  
M Arnold ◽  
...  

Abstract Background Randomised control trials have demonstrated direct positive and causal associations of 24-hr measurements of urinary sodium excretion on blood pressure. However, prospective studies, which often used spot (not 24-hr) measurements of urinary sodium, have reported J-shaped associations with higher risks of cardiovascular disease (CVD) at sodium intake <4 g/day. The reasons for the discrepant results are not fully understood, but have prompted some to question the World Health Organisation's recommendations to restrict sodium intake to <2.3g/day. Purpose We examined the effects of within-person variability in spot urinary sodium (UNa) measurements on immediate and delayed associations of UNa with blood pressure at baseline and at resurvey, and with incident cardiovascular disease in the UK Biobank (UKB). Methods Baseline spot urine samples were measured in 502,619 adults at baseline and in 20,346 participants who were resurveyed at 4 years after baseline. Linear regression was used to assess associations of baseline UNa measurements with systolic blood pressure (SBP; mmHg) at baseline and at resurvey. Cox regression was used estimate the associations between baseline measures of UNa with incident CVD events (recorded from linkage with hospital records). All analyses were adjusted for confounders and corrected for regression dilution bias. Results After excluding participants with prevalent diseases, the primary analyses involved 386,060 adults who were followed-up for a median of 7.8 years, during which ∼13,000 CVD events occurred. Estimated mean (SD) urinary sodium excretion was 77.4 mmol/L (SD 44.4, IQR = 42.8–103.7 mmol/L), and mean SBP/DBP were 137.5/82.3 (SD 18.5/10.1) mmHg, respectively. Within-person variability in UNa was high, with a self-correlation of 0.35 at 4 years between measurements. After adjustment for confounders and correction for regression dilution bias, a 100 mmol/L higher UNa was associated with an immediate 3.2 mmHg higher SBP (95% confidence interval [CI]: 2.8–3.6) in cross-sectional analyses (Figure 1). However, the corresponding associations of baseline UNa with SBP at resurvey was completely attenuated (p=0.20). The predicted risk of CVD was 1.06 (95% CI 1.06–1.07, p<0.001) for a 3.2 mmHg higher SBP, but the observed risk for a 100 mmol/L higher UNa was 0.95 (95% CI 0.82–1.10, p=0.47) (Figure 1). Conclusions While spot measurements of UNa were strongly associated with immediate effects on SBP, the magnitude of within-person variability in UNa precluded detection of associations with SBP several years after baseline or with risk of CVD. The extreme within-person variability in spot UNa may explain the discrepant results of the trials and observational studies of sodium and blood pressure. Figure 1. Spot UNa with SBP and CVD in UK Biobank Funding Acknowledgement Type of funding source: Public grant(s) – National budget only. Main funding source(s): Core funding from the Medical Research Council-Population Health Research Unit, British Heart Foundation


2015 ◽  
Vol 9 (4) ◽  
pp. e72
Author(s):  
Katarzyna Stolarz-Skrzypek ◽  
Adam Bednarski ◽  
Grzegorz Kiełbasa ◽  
Malgorzata Kloch-Badelek ◽  
Danuta Czarnecka

Author(s):  
Angela Zanfardino ◽  
Angela Zanfardino ◽  
Pierluigi Marzuillo ◽  
Linda Sessa ◽  
Assunta S Rollato ◽  
...  

Aim: People around the world are consuming much more sodium than is physiologically necessary. A number of studies suggest that dietary sodium intake is related to weight gain. The aim of our study was to evaluate in a population of children and adolescents with type 1 diabetes mellitus, possible correlations between the urinary sodium excretion (UNa24h), indirect marker of sodium intake, and both duration of diabetes and BMI z-score. Moreover, we also evaluated the correlation between UNa24h and duration of diabetes according with the presence/absence of overweight/obesity. Research Design and Methods: Children and adolescents aged between 4 and 18 years with type 1 diabetes were consecutively enrolled from Regional Center for Pediatric Diabetes in Naples. Urinary sodium concentrations were tested in three 24 h urine samples of 68 individuals (204 tests). Results: Mean UNa24h was 141.3±68.2 mmol/24h corresponding to 8.1±3.9 gr of NaCl intake. Seventyfive percent of subjects aged between 4 and 6 years, 95% of subjects aged between 7 and 10 years and 79.5% of subjects aged between 11 and 18 years consume more salt of the LARN’s advice. Urinary sodium excretion increased in relation to the increase of duration, in years, of diabetes (p=0.0027). No statistically significant relationship is between UNa24h (mmol/24h) and zBMI (p=0.705). Conclusions: This study shows that young patients with type 1 diabetes have high levels of UNa24h. Given the close correlation between the UNa24h and salt intake we can conclude that they take more salt with their diet. High salt intake is not related to overweight but to diabetes duration.


2019 ◽  
Vol 105 (3) ◽  
pp. e484-e493
Author(s):  
Christian Adolf ◽  
Daniel A Heinrich ◽  
Finn Holler ◽  
Benjamin Lechner ◽  
Nina Nirschl ◽  
...  

Abstract Context High dietary salt intake is known to aggravate arterial hypertension. This effect could be of particular relevance in the setting of primary aldosteronism (PA), which is associated with cardiovascular damage independent of blood pressure levels. The aim of this study was to determine the impact of therapy on salt intake in PA patients. Patients and Methods A total of 148 consecutive PA patients (66 with unilateral and 82 with bilateral PA) from the database of the German Conn’s Registry were included. Salt intake was quantified by 24-hour urinary sodium excretion before and after initiation of PA treatment. Study design Observational longitudinal cohort study. Setting Tertiary care hospital. Results At baseline, unilateral PA patients had a significantly higher urinary sodium excretion than patients with bilateral disease (205 vs 178 mmol/d, P = 0.047). Higher urinary sodium excretion correlated with an increased cardiovascular risk profile including proteinuria, impaired lipid, and glucose metabolism and was associated with higher daily doses of antihypertensive drugs to achieve blood pressure control. In unilateral disease, urinary sodium excretion dropped spontaneously to 176 mmol/d (P = 0.012) 1 year after unilateral adrenalectomy and remained low at 3 years of follow-up (174 mmol/d). In contrast, treatment with mineralocorticoid receptor antagonists (MRA) in bilateral PA patients was not associated with a significant change in urinary sodium excretion at follow-up (179 mmol/d vs 183 mmol/d). Conclusion PA patients consuming a high-salt diet, estimated based on urinary sodium excretion, respond to adrenalectomy with a significant reduction of salt intake, in contrast to MRA treatment.


2015 ◽  
Vol 40 (1) ◽  
pp. 59-65 ◽  
Author(s):  
Andrea E.C. Hallvass ◽  
Lígia Maria Claro ◽  
Simone Gonçalves ◽  
Márcia Olandoski ◽  
Fabiana Baggio Nerbass ◽  
...  

The purpose of this study was to estimate sodium intake in a group of patients with chronic kidney disease (CKD) and to correlate the results with the urinary excretion values of sodium and signs of fluid overload. We included patients with CKD in different stages. Urinary sodium was measured in 24 h urine samples. Body composition monitor (BCM) was used to estimate the hydration status. Sixty patients (38 ± 15 ml/min of GFR) presented 4.14 ± 1.71 g/24 h of urinary sodium excretion. Overhydration was detected in 50% of the patients by the BCM. There was a positive correlation between the measured sodium excretion values and BCM, ICW, ECW and TBW. In conclusion, markers of overhydration evaluated by BCM were positively correlated with urinary sodium excretion.


10.2196/16696 ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. e16696
Author(s):  
Michael P Dorsch ◽  
Maria L Cornellier ◽  
Armella D Poggi ◽  
Feriha Bilgen ◽  
Peiyu Chen ◽  
...  

Background High dietary sodium intake is a significant public health problem in the United States. High sodium consumption is associated with high blood pressure and high risk of cardiovascular disease. Objective The aim of this study was to evaluate the effect of a just-in-time adaptive mobile app intervention, namely, LowSalt4Life, on reducing sodium intake in adults with hypertension. Methods In this study, 50 participants aged ≥18 years who were under treatment for hypertension were randomized (1:1, stratified by gender) into 2 groups, namely, the App group (LowSalt4Life intervention) and the No App group (usual dietary advice) in a single-center, prospective, open-label randomized controlled trial for 8 weeks. The primary endpoint was the change in the 24-hour urinary sodium excretion estimated from spot urine by using the Kawasaki equation, which was analyzed using unpaired two-sided t tests. Secondary outcomes included the change in the sodium intake measured by the food frequency questionnaire (FFQ), the 24-hour urinary sodium excretion, blood pressure levels, and the self-reported confidence in following a low-sodium diet. Results From baseline to week 8, there was a significant reduction in the Kawasaki-estimated 24-hour urinary sodium excretion calculated from spot urine in the App group compared to that in the No App group (–462 [SD 1220] mg vs 381 [SD 1460] mg, respectively; P=.03). The change in the 24-hour urinary sodium excretion was –637 (SD 1524) mg in the App group and –322 (SD 1485) mg in the No App group (P=.47). The changes in the estimated sodium intake as measured by 24-hour dietary recall and by FFQ in the App group were –1537 (SD 2693) mg and –1553 (SD 1764) mg while those in the No App group were –233 (SD 2150) mg and –515 (SD 1081) mg, respectively (P=.07 and P=.01, respectively). The systolic blood pressure change from baseline to week 8 in the App group was –7.5 mmHg while that in the No App group was –0.7 mmHg (P=.12), but the self-confidence in following a low-sodium diet was not significantly different between the 2 groups. Conclusions This study shows that a contextual just-in-time mobile app intervention resulted in a greater reduction in the dietary sodium intake in adults with hypertension than that in the control group over a 8-week period, as measured by the estimated 24-hour urinary sodium excretion from spot urine and FFQ. The intervention group did not show a significant difference from the control group in the self-confidence in following a low sodium diet and in the 24-hour urinary sodium excretion or dietary intake of sodium as measured by the 24-hour dietary recall. A larger clinical trial is warranted to further elucidate the effects of the LowSalt4Life intervention on sodium intake and blood pressure levels in adults with hypertension. Trial Registration ClinicalTrials.gov NCT03099343; https://clinicaltrials.gov/ct2/show/NCT03099343 International Registered Report Identifier (IRRID) RR2-10.2196/11282


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Rufai Safianu ◽  
Jacob Plange-Rhule

Background. Globally, sodium intake has been found to be far above the normal level required by the body. Within countries, variations in salt intake exist between rural communities and urban communities. Experimental and epidemiological studies as well as studies involving clinical trials show the existence of adverse effect of salt consumption on the blood pressure of adults. The study evaluated salt intake among older normotensive adults in Atonsu, a suburb of Kumasi in the Ashanti region of Ghana. Methods. Participants were randomly selected from five churches which constituted cluster samples. A questionnaire was administered to participants for demographic information and dietary and lifestyle assessments. The study targeted 100 participants, twenty from each of the five churches. Eighty-two individuals gave their informed consent. Out of the 82 who gave their informed consent, 15 withdrew and 67 completed the course. The 67 participants comprised 36 (53.7%) men and 31 (46.3%) women. Systolic and diastolic blood pressure, BMI, urinary sodium, urinary potassium, serum creatinine, serum sodium, and serum potassium concentrations were also measured. Results. Participants’ mean age was 52.3 ± 8.7 years. Participants had 24 hr urinary sodium excretion of 153.0 ± 26.9 mmol/day. All participants indicated that they consume foods high in salt even though none of them added salt to their diet at table. Mean 24 hr urinary potassium was 52.5 ± 12.9 mmol/day. Mean systolic blood pressure was 119.9 ± 10.8 mmHg and mean diastolic blood pressure was 72.5 ± 7.3 mmHg. Their mean BMI was 23.7 ± 3.5 kg/m2. Conclusion. The participants who can be described as quite old and normotensive were high salt consumers, indicated by their dietary assessment and urinary sodium excretion, even though they had normal blood pressure.


Sign in / Sign up

Export Citation Format

Share Document