Improved Characteristics of Acetic Anhydride and Phthalic Anhydride Modified Jute Fibers

2014 ◽  
Vol 18 (1) ◽  
pp. 64-70 ◽  
Author(s):  
Md. Ibrahim H. Mondal ◽  
Md. Asadul Hoque ◽  
Md. Abdul Latif ◽  
Md. Khairul Islam

The modification of jute fiber with acetic (aliphatic) and phthalic (aromatic) anhydrides has revealed pronounced improvement of the inherent drawbacks (such as breaking strength, thermal stability, color fastness, etc.) of jute fiber. Between the acetic anhydride (AA) and phthalic anhydride (PA) modified fibers, the latter have shown better improvement of the described properties. Modification of jute with anhydrides is carried out in an aqueous medium (solid-liquid system) with potassium persulfate as the initiator under the catalytic influence of ferrous sulfate (FeSO4). At an optimized reaction condition, the percent weight gain and efficiency of the modifying agents are 12.94% and 14.38% for AA respectively and 15.18% and 18.98% for PA respectively. The FT-IR spectra confirm the modification reaction and the TGA shows an improvement in the thermal properties. The mechanical properties are investigated with a tensile tester. Upon prolonged exposure of the modified fibers to sunlight, the color fastness of the modified and unmodified fibers is measured with a grey scale.

Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1869
Author(s):  
A K M Mashud Alam ◽  
Donovan Jenks ◽  
George A. Kraus ◽  
Chunhui Xiang

Organophosphate (OP) compounds, a family of highly hazardous chemical compounds included in nerve agents and pesticides, have been linked to more than 250,000 annual deaths connected to various chronic diseases. However, a solid-state sensing system that is able to be integrated into a clothing system is rare in the literature. This study aims to develop a nanofiber-based solid-state polymeric material as a soft sensor to detect OP compounds present in the environment. Esters of polydiacetylene were synthesized and incorporated into a cellulose acetate nanocomposite fibrous assembly developed with an electrospinning technique, which was then hydrolyzed to generate more hydroxyl groups for OP binding. Scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), Instron® tensile tester, contact angle analyzer, and UV–Vis spectroscopy were employed for characterizations. Upon hydrolysis, polydiacetylene esters in the cellulosic fiber matrix were found unaffected by hydrolysis treatment, which made the composites suitable for OP sensing. Furthermore, the nanofibrous (NF) composites exhibited tensile properties suitable to be used as a textile material. Finally, the NF composites exhibited colorimetric sensing of OP, which is visible to the naked eye. This research is a landmark study toward the development of OP sensing in a protective clothing system.


2012 ◽  
Vol 584 ◽  
pp. 136-140 ◽  
Author(s):  
S. Janarthanan ◽  
Y.C. Rajan ◽  
R. Sugaraj Samuel ◽  
S. Pandi

ABSTRACT Organic single crystal of Phthalic Anhydride (PA) was successfully grown by slow evaporation method. The structure of the grown crystal was confirmed by X-ray diffraction analysis. FT-IR, and FT-Raman spectral analysis of the crystalline samples reveal that the crystalline sample consists of all functional groups. The placement of protons was identified from H1-NMR spectral analysis. UV-Visible and photoluminescence spectral analyses were carried out for the grown crystals. The thermal behavior was studied with TGA-DTA analyses. The existence of second harmonic generation (SHG) signal was observed using Nd:YAG laser with a fundamental wavelength of 1064 nm. Keywords: Organic crystals, NLO crystals


2005 ◽  
Vol 498-499 ◽  
pp. 49-54 ◽  
Author(s):  
Fábio de Oliveira Arouca ◽  
João Jorge Ribeiro Damasceno

The behavior of an isothermal and non-reaction solid-liquid system can be model using a mathematical model based on the Mixtures’ Theory of Continuum Mechanics. The knowledge of the constitutive equations of this phenomenon, as pressure on the solids and medium permeability, is very important in the design and performance evaluation of the continuous thickeners or filters. In this work the batch sedimentation phenomena of a kaolin aqueous suspensions was investigated. The technique consists on measuring of the gamma rays attenuation when they cross the physical media as a function of the local concentration at several vertical positions in a reservoir. Using the experimental data and local concentration as a function of the attenuation curve, it is possible to determine the constitutive equations. The results were satisfactory, allowing simulations of this phenomenon for steady and transient regimes in future papers.


2010 ◽  
Vol 65 (15) ◽  
pp. 4460-4471 ◽  
Author(s):  
Tapio Salmi ◽  
Henrik Grénman ◽  
Heidi Bernas ◽  
Johan Wärnå ◽  
Dmitry Yu. Murzin

2021 ◽  
Author(s):  
Deepak S. Desai ◽  
Ganapati D. Yadav

Abstract The Friedel-Crafts acylation of furan with acetic anhydride to produce 2-acyl furan is industrially important. With an aim of replacing the highly polluting process, it this study, supported but modified heteropoly acids were used. Metal exchanged dodecatungstophosphoric acid (DTP) was loaded on three different supports and its effect on acylation was evaluated. Thus, chromium exchanged DTP was supported on K-10, SiO2, and ZrO2 using the incipient wetness impregnation method. 20% w/w Cr0.66-DTP/K-10 having the best activity for the acylation of furan with acetic anhydride was chosen for full characterization and reaction kinetics. Under optimized condition, the catalyst to furan ratio was 9.6%, significantly less as per prior art, which gave 88% conversion with 100% selectivity. The prepared catalysts were characterized by sophisticated techniques, namely, XRD, FT-IR, SEM, NH3-TPD, TGA, and BET. The Eley-Rideal mechanism was found to fit the kinetic data. The activation energy was found to be 18.03 kcal/mol. The reaction is green and clean as no chlorinated chemicals, reagents, and catalysts were used.


1992 ◽  
Vol 22 (12) ◽  
pp. 1651-1653 ◽  
Author(s):  
Yan Chaoguo ◽  
Kong Qiangzhi ◽  
Lu Wenxing ◽  
Wu Jitao

METANA ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 33-38
Author(s):  
Paryanto Paryanto ◽  
Sunu Herwi Pranolo ◽  
Ari Diana Susanti ◽  
Kristina Ratna Dewi ◽  
Meydiana Rossari

Textile dyes are divided into two types, natural dyes and synthetic dyes. Natural dyes commonly made from extraction. Extraction is a process in which one or more components are separated selectively from a liquid or solid mixture, the feed, by means of a liquid immiscible solvent. Extraction can be classified into two group, liquid extraction and solid-liquid extraction. Solvents that are usually used in the extraction of natural dyes are aquades and ethanol. The purpose of this research was to determine the chemical structure, especially tannin in natural dyes from mangrove species Rhizophora stylosa through several samples testing natural dyes. Rhizophora stylosa that have been extracted and evaporated will conducted several tests to obtain chemical structures in natural dyes and yield of tannin in natural dyes. Tests carried out include testing FT-IR, and HPLC. Based on FT-IR analysis, the extraction of Rhizophora stylosa containing tannin indicated by the presence of hydroxyl (O-H) in the area of 3385.36 cm-1, aromatic (C-H) in the area of 1365.53 cm-1, carbonyl (C=O) in the area 1646.36 cm-1, esters (C-O) in the area 1217.30 cm-1. While tannin content obtained from the analysis of HPLC were 6.087 ppm. 


2012 ◽  
Vol 192-193 ◽  
pp. 238-245 ◽  
Author(s):  
Hong Yu Xu ◽  
Ze Sheng Ji ◽  
Zhen Yu Wang

In this paper, chip recycling technology combined with SIMA method which is called CR-SIMA method was adopted to prepare semi-solid billets. AZ91D magnesium alloy was refined by Er and its microstructural evolution was investigated during semi-solid isothermal treatment. The results show that Er can improve the feature of cast structure and decrease the grain size. Moreover, the γ-Mg17Al12 phase is well refined and disperses in the α-Mg matrix. A semisolid microstructure with small and spheroidal primary particles can be obtained after partially remelting. With increasing heating temperature, the dissolution of eutectic Mg17Al12 phase first took place, resulting in the primary dendritic grains coarsening into interconnected non-dendritic grains. With heating continuously, the residual interdendritic γ-Mg17Al12 at the edges of the primary grains melted in succession and the primary grains separated into small polygon grains. During the semi-solid isothermal treatment, the amount of liquid increased until the solid-liquid system reached its equilibrium state. At the same time, owing to the decreasing of interfacial energy, the grains gradually spheroidized and began to grow with a further increasing of the holding time.


2013 ◽  
Vol 209 ◽  
pp. 35-38 ◽  
Author(s):  
Kruti Shah ◽  
R.V. Upadhyay ◽  
V.K. Aswal

A magnetorheological fluid (MR), a suspension of micron-sized magnetic particles in a carrier fluid, has vast applications in the field of vibration dampers, seismic vibration dampers, shock absorbers, clutches, break system, vehicle suspensions, seat suspensions, Robotics, design of buildings and bridges etc. The biggest issue in MR fluid is the settling of particles under gravity. To overcome this, one of the approaches is to mix micron size particles in a magnetic fluid (MF) known as Nano-MRF. In the present paper, we report a technique to synthesis Nano-MRF suspension having high stability under gravitation as well as magnetic field. X-ray diffraction (XRD) and dynamic light scattering are used to characterize the solid/liquid system. Magnetic and Magnetorheological properties are studied and results indicate that: instead of decreasing stress with increasing temperature we have observed an increase until 40°C and thereafter, it decreases. This is explained based on, inter and intra particles/chain interaction as well as synergetic effect between small and large sized magnetic dispersion.


Sign in / Sign up

Export Citation Format

Share Document