Slice data representation and format for multi-material objects for additive manufacturing processes

2017 ◽  
Vol 23 (1) ◽  
pp. 149-161 ◽  
Author(s):  
Zhengyan Zhang ◽  
Sanjay Joshi

Purpose This paper aims to develop a slice-based representation of geometry and material information of a multi-material object to be produced by additive manufacturing. Representation of complex heterogeneous material allowing for the additive manufacturing-based build of a wide range of objects that are limited only by the constraints of the manufacturing process. Design/methodology/approach Initial 3D CAD models are created with multiple and functionally graded materials using an assembly model to create a single part with well-defined material regions. These models are then sliced to create the geometry and material boundaries required for each layer to enable layer-by-layer fabrication. Findings A representation schema is proposed to add multi-material attributes to a sliced file for additive manufacturing using the combination of material index and material geometry region. A modified common layer interface data format is proposed to allow for representation of a wide range of homogeneous and heterogeneous material for each slice. This format allows for a generic input for tool paths to be generated for each material of the layer. Originality/value The proposed approach allows for slice data representation for any material combination that can be defined mathematically. Three different material types, namely, composite material, functionally graded materials and combination thereof, are provided as examples. These data form the input data for subsequent tool path planning.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Royal Madan ◽  
Shubhankar Bhowmick

Purpose Functionally graded materials are a special class of composites in which material are graded either continuously or layered wise depending upon its applications. With such variations of materials, the properties of structure vary either lengthwise or thickness wise. This paper aims to investigate models for effective estimation of material properties, as it is necessary for industries to identify the properties of composites or functionally graded materials (FGM’s) before manufacturing and also to develop novel material combinations. Design/methodology/approach Available models were compared for different material combinations and tested with experimental data for properties such as Young’s modulus, density, coefficient of thermal expansion (CTE) and thermal conductivity. Combinations of metal–ceramic and metal–metal were selected such that their ratios cover a wide range of materials. Findings This study reveals different models will be required depending on the material used and properties to be identified. Practical implications The results of the present work will help researchers in the effective modeling of composites or FGM’s for any analysis. Originality/value This paper presents a comparison and review of various analytical methods with experimental data graphically to find out the best suitable method. For the first time, the Halpin-Tsai model was extended in the analysis of the CTE which shows good approximations.


2014 ◽  
Vol 20 (6) ◽  
pp. 511-522 ◽  
Author(s):  
Pierre Muller ◽  
Jean-Yves Hascoet ◽  
Pascal Mognol

Purpose – The purpose of this paper is to propose an evaluation of toolpaths for additive manufacturing of functionally graded materials (FGM) parts to ensure the manufacturing of parts in compliance with the desired material distribution. The selection of an appropriate path strategy is critical when manufacturing FGM parts. Design/methodology/approach – The selection of a path strategy is based on a process modeling and an additive laser melting (ALM) system control. To do that, some path strategies are selected, simulated and compared. Findings – The comparison of some paths strategies was applied on a study case from the biomedical field. Test-parts were manufactured and analyzed. Results show a good correlation between the simulated and the deposited material distributions. The evaluation of toolpaths based on the process modeling and the system control was validated. Originality/value – Nowadays, FGM parts manufactured with ALM processes are not functional. To move from these samples to functional parts, it is necessary to have a global approach of the manufacturing procedure centered on the path planning. Few methodologies of path planning are adapted to FGM parts but are still limited.


Materials ◽  
2017 ◽  
Vol 10 (12) ◽  
pp. 1368 ◽  
Author(s):  
Uwe Scheithauer ◽  
Steven Weingarten ◽  
Robert Johne ◽  
Eric Schwarzer ◽  
Johannes Abel ◽  
...  

Author(s):  
Yuen-Shan Leung ◽  
Huachao Mao ◽  
Yong Chen

Functionally graded materials (FGM) possess superior properties of multiple materials due to the continuous transitions of these materials. Recent progresses in multi-material additive manufacturing (AM) processes enable the creation of arbitrary material composition, which significantly enlarges the manufacturing capability of FGMs. At the same time, the fabrication capability also introduces new challenges for the design of FGMs. A critical issue is to create the continuous material distribution under the fabrication constraints of multi-material AM processes. Using voxels to approximate gradient material distribution could be one plausible way for additive manufacturing. However, current FGM design methods are non-additive-manufacturing-oriented and unpredictable. For instance, some designs require a vast number of materials to achieve continuous transitions; however, the material choices that are available in a multi-material AM machine are rather limited. Other designs control the volume fraction of two materials to achieve gradual transition; however, such transition cannot be functionally guaranteed. To address these issues, we present a design and fabrication framework for FGMs that can efficiently and effectively generate printable and predictable FGM structures. We adopt a data-driven approach to approximate the behavior of FGM using two base materials. A digital material library is constructed with different combinations of the base materials, and their mechanical properties are extracted by Finite Element Analysis (FEA). The mechanical properties are then used for the conversion process between the FGM and the dual material structure such that similar behavior is guaranteed. An error diffusion algorithm is further developed to minimize the approximation error. Simulation results on four test cases show that our approach is robust and accurate, and the framework can successfully design and fabricate such FGM structures.


2017 ◽  
Vol 34 (4) ◽  
pp. 1314-1331 ◽  
Author(s):  
W.X. Zhang ◽  
R.G. Liu ◽  
Y. Bai

Purpose For general quasi-static problems of viscoelastic functionally graded materials (VFGMs), the correspondence principle can be applied only for simple structures with a closed form solution of the corresponding elastic problem exists. In this paper, a new symplectic approach, according to the correspondence principle between linearly elastic and viscoelastic solids, is proposed for quasi-static VFGMs. Design/methodology/approach Firstly, by employing the method of separation of variables, all the fundamental eigenvectors of the governing equations are obtained analytically. Then, the satisfactions of boundary conditions prescribed on the ends and laterals are discussed based on the variable substitution and the eigenvector expansion methods. Findings In the numerical examples, some boundary condition problems are given. The results show the local effects due to the displacement constraints. Originality/value The paper provides an innovative technique for quasi-static problems of VFG Ms. Its correctness and the efficiency are well suported by numerical results.


Sign in / Sign up

Export Citation Format

Share Document