scholarly journals Wind tunnel testing of additive manufactured aircraft components

2018 ◽  
Vol 24 (5) ◽  
pp. 886-893 ◽  
Author(s):  
Z.W. Teo ◽  
T.H. New ◽  
Shiya Li ◽  
T. Pfeiffer ◽  
B. Nagel ◽  
...  

Purpose This paper aims to report on the physical distortions associated with the use of additive manufactured components for wind tunnel testing and procedures adopted to correct for them. Design/methodology/approach Wings of a joined-wing test aircraft configuration were fabricated with additive manufacturing and tested in a subsonic closed-loop wind tunnel. Wing deflections were observed during testing and quantified using image-processing procedures. These quantified deflections were then incorporated into numerical simulations and results had agreed with wind tunnel measurement results. Findings Additive manufacturing provides cost-effective wing components for wind tunnel test components with fast turn-around time. They can be used with confidence if the wing deflections could be accounted for systematically and accurately, especially at the region of aerodynamic stall. Research limitations/implications Significant wing flutter and unsteady deflections were encountered at higher test velocities and pitch angles. This reduced the accuracy in which the wing deflections could be corrected. Additionally, wing twists could not be quantified as effectively because of camera perspectives. Originality/value This paper shows that additive manufacturing can be used to fabricate aircraft test components with satisfactory strength and quantifiable deflections for wind tunnel testing, especially when the designs are significantly complex and thin.

Author(s):  
Farzad Rayegani ◽  
Godfrey C. Onwubolu ◽  
Attila Nagy ◽  
Hargurdeep Singh

In this paper, we present two additive manufacturing applications: (1) vacuum forming tooling using AM; (2) rocket functional prototype using AM for computational fluid dynamics (CFD) and wind-tunnel testing. The first application shows how additive manufacturing (AM) facilitates the manufacture of vacuum formed parts, which allows such parts to be easily produced especially in the manufacturing sector. We show how combining the advantages of the CAD and FDM technology, vacuum forming can be completed quickly, efficiently and cost effectively. The paper shows that using modified build parameters, the tools FDM creates can be inherently porous, which eliminates the time needed for drilling vent holes that are necessary for other vacuum forming tools, while improving part quality with an evenly distributed vacuum draw. Using SolidWorks CAD software, the model of the tool is created. The STL file is exported to the Insight software, and we present how the Tool Paths Custom Group feature is applied to optimize the tool-paths file and then sent to the FDM system that prints the tooling from ABS engineering thermoplastic. The tooling is then used in the Formech 686 manual vacuum forming machine to produce the vacuum formed part. The second application shows how additive manufacturing (AM) has been applied to producing functional model for wind–tunnel testing, as well as providing computational fluid dynamics (CFD) tool for comparing results obtained from the wind-tunnel testing. The present work is focused on applications of FDM technology for manufacturing wind tunnel test models. The CAD model of a rocket was analyzed for its aerodynamic properties and its functional prototype produced using AM for use in wind–tunnel testing so as to verify and tune the aerodynamic properties. Initial wall conditions were defined for the rocket in terms of the air velocity. The flow simulation was carried out and the goals examined are the velocity and pressure fields around the rocket model. The paper examines some practical issues that arise between how the model geometry for CDF process differs from that that of the FDM process. Consequently, we show that AM-based fused deposition modeling (FDM) technology is faster, less expensive and more efficient than traditional manufacturing processes for vacuum forming and for rapid prototyping of function models for wind-tunnel applications.


2012 ◽  
Vol 190-191 ◽  
pp. 1273-1277 ◽  
Author(s):  
Zheng Yu Zhang ◽  
Zhong Xiang Sun ◽  
Xu Hui Huang ◽  
Yan Sun

The advanced precision of drag coefficient is 0.0001 for the high speed wind tunnel test of measuring forces, the model’s angle of attack precision is ≤0.01°following errors distribution. A videogrammetric method of model’s attitude is therefore proposed, its uncertainty is investigated, and a compensation method of its systematic error is also presented by this paper. The three engineering videogrammetric experiments of attack angle in 2 meter supersonic wind tunnel testing have demonstrated that measuring standard deviation of videogrammetric measurement system established by this paper is ≤0.0094°, in addition it neither destroys the model’s shape, nor changes the stiffness or strength, so it is useful and effective.


2011 ◽  
Author(s):  
David Le Pelley ◽  
Peter Richards

Wind tunnel testing to determine yacht performance has been carried out for at least the last 50 years. A common perception is that experimental methods do not improve significantly over time. This paper shows how modern wind tunnel testing is still the only realistic way of providing a complete picture of aerodynamic performance over a full range of conditions in a rapid and cost-effective manner. The use of a Real-Time VPP and a sail shape recognition system combine to enhance the accuracy and repeatability of testing. The influence of examining boat speed instead of driving force is investigated.


Aerospace ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 200
Author(s):  
Natsuki Tsushima ◽  
Kenichi Saitoh ◽  
Hitoshi Arizono ◽  
Kazuyuki Nakakita

Additive manufacturing (AM) technology has a potential to improve manufacturing costs and may help to achieve high-performance aerospace structures. One of the application candidates would be a wind tunnel wing model. A wing tunnel model requires sophisticated designs and precise fabrications for accurate experiments, which frequently increase manufacturing costs. A flutter wind tunnel testing, especially, requires a significant cost due to strict requirements in terms of structural and aeroelastic characteristics avoiding structural failures and producing a flutter within the wind tunnel test environment. The additive manufacturing technique may help to reduce the expensive testing cost and allows investigation of aeroelastic characteristics of new designs in aerospace structures as needed. In this paper, a metal wing model made with the additive manufacturing technique for a transonic flutter test is studied. Structural/aeroelastic characteristics of an additively manufactured wing model are evaluated numerically and experimentally. The transonic wind tunnel experiment demonstrated the feasibility of the metal AM-based wings in a transonic flutter wind tunnel testing showing the capability to provide reliable experimental data, which was consistent with numerical solutions.


Author(s):  
Jiri Cecrdle ◽  
Ondrej Vich ◽  
Petr Malinek

This article presents the design, development and wind tunnel testing of a whirl flutter demonstrator. First, the physical principle of the whirl flutter is explained. Next, the mechanical concept of the demonstrator is described, and preparatory experiments are outlined. The main focus is on the wind tunnel measurements, including the methodology and test equipment, the result assessment methodology, and the result examples. Finally, future activities are outlined, and outcomes are formulated.


2015 ◽  
Vol 21 (1) ◽  
pp. 34-42 ◽  
Author(s):  
Chao Wang ◽  
Guofu Yin ◽  
Zhengyu Zhang ◽  
Shuiliang Wang ◽  
Tao Zhao ◽  
...  

Purpose – The purpose of this paper is to introduce a novel method for developing static aeroelastic models based on rapid prototyping for wind tunnel testing. Design/methodology/approach – A metal frame and resin covers are applied to a static aeroelastic wind tunnel model, which uses the difference of metal and resin to achieve desired stiffness distribution by the stiffness similarity principle. The metal frame is made by traditional machining, and resin covers are formed by stereolithgraphy. As demonstrated by wind tunnel testing and stiffness measurement, the novel method of design and fabrication of the static aeroelastic model based on stereolithgraphy is practical and feasible, and, compared with that of the traditional static elastic model, is prospective due to its lower costs and shorter period for its design and production, as well as avoiding additional stiffness caused by outer filler. Findings – This method for developing static aeroelastic wind tunnel model with a metal frame and resin covers is feasible, especially for aeroelastic wind tunnel models with complex external aerodynamic shape, which could be accurately constructed based on rapid prototypes in a shorter time with a much lower cost. The developed static aeroelastic aircraft model with a high aspect ratio shows its stiffness distribution in agreement with the design goals, and it is kept in a good condition through the wind tunnel testing at a Mach number ranging from 0.4 to 0.65. Research limitations/implications – The contact stiffness between the metal frame and resin covers is difficult to calculate accurately even by using finite element analysis; in addition, the manufacturing errors have some effects on the stiffness distribution of aeroelastic models, especially for small-size models. Originality/value – The design, fabrication and ground testing of aircraft static aeroelastic models presented here provide accurate stiffness and shape stimulation in a cheaper and sooner way compared with that of traditional aeroelastic models. The ground stiffness measurement uses the photogrammetry, which can provide quick, and precise, evaluation of the actual stiffness distribution of a static aeroelastic model. This study, therefore, expands the applications of rapid prototyping on wind tunnel model fabrication, especially for the practical static aeroelastic wind tunnel tests.


2021 ◽  
Author(s):  
Tony Estrada ◽  
Kevin R. Anderson ◽  
Ivan Gundersen ◽  
Chuck Johnston

Abstract This paper presents results of Computational Fluid Dynamics (CFD) modeling and experimental wind tunnel testing to predict the drag coefficient for a Human Powered Vehicle (HPV) entered in the World Human Powered Speed Challenge (WHPSC). Herein, a comparison of CFD to wind tunnel test data is presented for ten different HPV designs. The current study reveals that streamlining the nose cone, tail cone, and wheel housing allows for a reduction of drag forces in critical areas, and a reduced drag coefficient. This allows for a selection to be made during the design phase, prior to manufacturing. Drag coefficients were found to be in the range of 0.133 < CD < 0.273, depending on the type of HPV considered. Wind tunnel testing was performed on scale models of the HPV showing agreement to the CFD results on average to within 16%. The wind tunnel testing showed a 7.7% decrease in drag coefficient from the baseline HPV of 2019 to the baseline HPV of 2020. Thus, the wind tunnel data supported by CFD analysis was used to assist in the design of the HPV.


2011 ◽  
Vol 243-249 ◽  
pp. 1629-1633
Author(s):  
Mei Yu ◽  
Hai Li Liao ◽  
Ming Shui Li ◽  
Cun Ming Ma ◽  
Ming Liu

Aerodynamic stability is an issue in the wind-resistant design of long-span bridges, flutter is an aerodynamic instability phenomenon that occurs due to interactions between wind and structural motion. The Xihoumen Bridge is the second long suspension bridge in the world, the aeroelastic performance of the Xihoumen Bridge is investigated by wind tunnel testing and an analytical approach. In the case, wind-tunnel testing was performed using an aeroelastic full model of the bridge, and two section models of the bridge. Flutter derivatives of bridge decks are routinely extracted from wind tunnel section model experiments for the assessment of performance against wind loading, the analytical method used here were a two-dimensional flutter analysis and a multi-mode analysis in the frequency domain. The analytical results were compared with the wind tunnel test data; it showed that the flutter analysis results were good agreement with the wind-tunnel test data.


Sign in / Sign up

Export Citation Format

Share Document