Removing Systematic Bias from Demand Forecasts

Author(s):  
Joanne Utley
2019 ◽  
Author(s):  
Joel L Pick ◽  
Nyil Khwaja ◽  
Michael A. Spence ◽  
Malika Ihle ◽  
Shinichi Nakagawa

We often quantify a behaviour by counting the number of times it occurs within a specific, short observation period. Measuring behaviour in such a way is typically unavoidable but induces error. This error acts to systematically reduce effect sizes, including metrics of particular interest to behavioural and evolutionary ecologists such as R2, repeatability (intra-class correlation, ICC) and heritability. Through introducing a null model, the Poisson process, for modelling the frequency of behaviour, we give a mechanistic explanation of how this problem arises and demonstrate how it makes comparisons between studies and species problematic, because the magnitude of the error depends on how frequently the behaviour has been observed (e.g. as a function of the observation period) as well as how biologically variable the behaviour is. Importantly, the degree of error is predictable and so can be corrected for. Using the example of parental provisioning rate in birds, we assess the applicability of our null model for modelling the frequency of behaviour. We then review recent literature and demonstrate that the error is rarely accounted for in current analyses. We highlight the problems that arise from this and provide solutions. We further discuss the biological implications of deviations from our null model, and highlight the new avenues of research that they may provide. Adopting our recommendations into analyses of behavioural counts will improve the accuracy of estimated effect sizes and allow meaningful comparisons to be made between studies.


2017 ◽  
Author(s):  
Jocelyn Raude

Objectives: Although people have been repeatedly found to underestimate the frequency of risks to health from common diseases, we still do not know much about reasons for this systematic bias, which is also referred to as “primary bias” in the literature. In this study, we take advantage of a series of large epidemics of mosquito-borne diseases to examine the accuracy of judgments of risk frequencies. In this aim, we assessed the perceived versus the observed prevalence of infection by zika, chikungunya or dengue fever during these outbreaks, as well as their variations among different subpopulations and epidemiological settings.Design: We used data drawn from 4 telephone surveys, conducted between 2006 and 2016, among representative samples of the adult population in tropical regions (Reunion, Martinique, and French Guiana). The participants were asked to estimate the prevalence of these infections by using a natural frequency scale.Results: The surveys showed that (1) most people greatly overestimated the prevalence of infection by arbovirus, (2) these risk overestimations fell considerably as the actual prevalence of these diseases increased, (3) the better-educated and male participants consistently yielded less inaccurate risk estimates across epidemics, and (4) that these biases in the perception of prevalence of these infectious diseases are relatively well predicted by probability weighting function.Conclusions: These findings suggest that the cognitive biases that affect perception of prevalence of acute infectious diseases are not fundamentally different from those that characterize other types of probabilistic judgments observed in the field of behavioral decision-making. They also indicate that numeracy may play a considerable role in people’s ability to transform epidemiological observations from their social environment to more accurate risk estimates.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Daniel H. Blustein ◽  
Ahmed W. Shehata ◽  
Erin S. Kuylenstierna ◽  
Kevin B. Englehart ◽  
Jonathon W. Sensinger

AbstractWhen a person makes a movement, a motor error is typically observed that then drives motor planning corrections on subsequent movements. This error correction, quantified as a trial-by-trial adaptation rate, provides insight into how the nervous system is operating, particularly regarding how much confidence a person places in different sources of information such as sensory feedback or motor command reproducibility. Traditional analysis has required carefully controlled laboratory conditions such as the application of perturbations or error clamping, limiting the usefulness of motor analysis in clinical and everyday environments. Here we focus on error adaptation during unperturbed and naturalistic movements. With increasing motor noise, we show that the conventional estimation of trial-by-trial adaptation increases, a counterintuitive finding that is the consequence of systematic bias in the estimate due to noise masking the learner’s intention. We present an analytic solution relying on stochastic signal processing to reduce this effect of noise, producing an estimate of motor adaptation with reduced bias. The result is an improved estimate of trial-by-trial adaptation in a human learner compared to conventional methods. We demonstrate the effectiveness of the new method in analyzing simulated and empirical movement data under different noise conditions.


2021 ◽  
pp. 1-18
Author(s):  
Pelle Guldborg Hansen ◽  
Erik Gahner Larsen ◽  
Caroline Drøgemüller Gundersen

Abstract Surveys based on self-reported hygiene-relevant routine behaviors have played a crucial role in policy responses to the COVID-19 pandemic. In this article, using anchoring to test validity in a randomized controlled survey experiment during the COVID-19 pandemic, we demonstrate that asking people to self-report on the frequency of routine behaviors are prone to significant measurement error and systematic bias. Specifically, we find that participants across age, gender, and political allegiance report higher (lower) frequencies of COVID-19-relevant behaviors when provided with a higher (lower) anchor. The results confirm that such self-reports should not be regarded as behavioral data and should primarily be used to inform policy decisions if better alternatives are not available. To this end, we discuss the use of anchoring as a validity test relative to self-reported behaviors as well as viable alternatives to self-reports when seeking to behaviorally inform policy decisions.


Author(s):  
Emilio J Ruiz-Malagón ◽  
Santiago A Ruiz-Alias ◽  
Felipe García-Pinillos ◽  
Gabriel Delgado-García ◽  
Victor M Soto-Hermoso

Chest bands have been the most used device to monitor heart rate during running. However, some runners feel uncomfortable with the use of bands due to the friction and pressure exerted on the chest. Thus, the aim of this study was to determine if the photoplethysmography (PPG) system Polar Precision Prime used in the Polar Vantage M watch could replace chest bands (Polar V800-H10) to monitor heart rate with the same precision. A group of 37 people, middle-distance and long-distance professional runners, participated in this study. The submaximal speed was determined using 50% of the participants’ maximum speed in the height of their season. The Polar Vantage M reported high correlation ( r > 0.84) and high ICC (ICC > 0.86) when comparing its heart rate monitor with the Polar V800 synchronised with H10 chest strap during recording intervals of more than 2 min. The systematic bias and random error were very small (<1 bpm), especially for the 600 s recording interval (0.26 ± 5.10 bpm). Nevertheless, the error increased for 10 s (−5.13 ± 9.20 bpm), 20 s (−8.65 ± 12.60 bpm) and 30 s (−10.71 ± 14.99 bpm) time intervals. In conclusion, the PPG Polar Precision Prime included in the Polar Vantage M demonstrates that it could be a valid alternative to chest bands for monitoring heart rate while running, taking into account some usage considerations, good strap adjustment and an initial calibration time during the first 2–3 min.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Giulio Tononi ◽  
Chiara Cirelli

Sleep must serve an essential, universal function, one that offsets the risk of being disconnected from the environment. The synaptic homeostasis hypothesis (SHY) is an attempt to identify this essential function. Its core claim is that sleep is needed to reestablish synaptic homeostasis, which is challenged by the remarkable plasticity of the brain. In other words, sleep is “the price we pay for plasticity.” In this issue, M. G. Frank reviewed several aspects of the hypothesis and raised several issues. The comments below provide a brief summary of the motivations underlying SHY and clarify that SHY is a hypothesis not about specific mechanisms, but about a universal, essential function of sleep. This function is the preservation of synaptic homeostasis in the face of a systematic bias toward a net increase in synaptic strength—a challenge that is posed by learning during adult wake, and by massive synaptogenesis during development.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Mercy I. Akerele ◽  
Sara A. Zein ◽  
Sneha Pandya ◽  
Anastasia Nikolopoulou ◽  
Susan A. Gauthier ◽  
...  

Abstract Introduction Quantitative positron emission tomography (PET) studies of neurodegenerative diseases typically require the measurement of arterial input functions (AIF), an invasive and risky procedure. This study aims to assess the reproducibility of [11C]DPA-713 PET kinetic analysis using population-based input function (PBIF). The final goal is to possibly eliminate the need for AIF. Materials and methods Eighteen subjects including six healthy volunteers (HV) and twelve Parkinson disease (PD) subjects from two [11C]-DPA-713 PET studies were included. Each subject underwent 90 min of dynamic PET imaging. Five healthy volunteers underwent a test-retest scan within the same day to assess the repeatability of the kinetic parameters. Kinetic modeling was carried out using the Logan total volume of distribution (VT) model. For each data set, kinetic analysis was performed using a patient-specific AIF (PSAIF, ground-truth standard) and then repeated using the PBIF. PBIF was generated using the leave-one-out method for each subject from the remaining 17 subjects and after normalizing the PSAIFs by 3 techniques: (a) Weightsubject×DoseInjected, (b) area under AIF curve (AUC), and (c) Weightsubject×AUC. The variability in the VT measured with PSAIF, in the test-retest study, was determined for selected brain regions (white matter, cerebellum, thalamus, caudate, putamen, pallidum, brainstem, hippocampus, and amygdala) using the Bland-Altman analysis and for each of the 3 normalization techniques. Similarly, for all subjects, the variabilities due to the use of PBIF were assessed. Results Bland-Altman analysis showed systematic bias between test and retest studies. The corresponding mean bias and 95% limits of agreement (LOA) for the studied brain regions were 30% and ± 70%. Comparing PBIF- and PSAIF-based VT estimate for all subjects and all brain regions, a significant difference between the results generated by the three normalization techniques existed for all brain structures except for the brainstem (P-value = 0.095). The mean % difference and 95% LOA is −10% and ±45% for Weightsubject×DoseInjected; +8% and ±50% for AUC; and +2% and ± 38% for Weightsubject×AUC. In all cases, normalizing by Weightsubject×AUC yielded the smallest % bias and variability (% bias = ±2%; LOA = ±38% for all brain regions). Estimating the reproducibility of PBIF-kinetics to PSAIF based on disease groups (HV/PD) and genotype (MAB/HAB), the average VT values for all regions obtained from PBIF is insignificantly higher than PSAIF (%difference = 4.53%, P-value = 0.73 for HAB; and %difference = 0.73%, P-value = 0.96 for MAB). PBIF also tends to overestimate the difference between PD and HV for HAB (% difference = 32.33% versus 13.28%) and underestimate it in MAB (%difference = 6.84% versus 20.92%). Conclusions PSAIF kinetic results are reproducible with PBIF, with variability in VT within that obtained for the test-retest studies. Therefore, VT assessed using PBIF-based kinetic modeling is clinically feasible and can be an alternative to PSAIF.


2021 ◽  
Vol 73 ◽  
pp. 102123
Author(s):  
C. Hunt ◽  
J. Romero ◽  
J. Jara ◽  
G. Lagos
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document