The Cost and Effectiveness of Sustainable City Logistics Policies Using Small Electric Vehicles

Author(s):  
Sandra Melo ◽  
Patrícia Baptista ◽  
Álvaro Costa
2020 ◽  
Vol 119 (820) ◽  
pp. 317-322
Author(s):  
Michael T. Klare

By transforming patterns of travel and work around the world, the COVID-19 pandemic is accelerating the transition to renewable energy and the decline of fossil fuels. Lockdowns brought car commuting and plane travel to a near halt, and the mass experiment in which white-collar employees have been working from home may permanently reduce energy consumption for business travel. Renewable energy and electric vehicles were already gaining market share before the pandemic. Under pressure from investors, major energy companies have started writing off fossil fuel reserves as stranded assets that are no longer worth the cost of extracting. These shifts may indicate that “peak oil demand” has arrived earlier than expected.


2021 ◽  
Vol 67 ◽  
pp. 102751
Author(s):  
Jagienka Rześny-Cieplińska ◽  
Agnieszka Szmelter-Jarosz ◽  
Sarbast Moslem

Author(s):  
G.K. Ayetor ◽  
R. Opoku ◽  
C.K.K. Sekyere ◽  
A. Agyei-Agyeman ◽  
G.R. Deyegbe
Keyword(s):  

2022 ◽  
pp. 133-155
Author(s):  
Giulio Ferro ◽  
Riccardo Minciardi ◽  
Luca Parodi ◽  
Michela Robba

The relevance of electric vehicles (EVs) is increasing along with the relative issues. The definition of smart policies for scheduling the EVs charging process represents one of the most important problems. A discrete-event approach is proposed for the optimal scheduling of EVs in microgrids. This choice is due to the necessity of limiting the number of the decision variables, which rapidly grows when a small-time discretization step is chosen. The considered optimization problem regards the charging of a series of vehicles in a microgrid characterized by renewable energy source, a storage element, the connection to the main grid, and a charging station. The objective function to be minimized results from the weighted sum of the cost for purchasing energy from the external grid, the weighted tardiness of the services provided, and a cost related to the occupancy of the socket. The approach is tested on a real case study.


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 709 ◽  
Author(s):  
Donkyu Baek ◽  
Yukai Chen ◽  
Naehyuck Chang ◽  
Enrico Macii ◽  
Massimo Poncino

Finding the cost-optimal battery size in the context of parcel delivery with Electric Vehicles (EVs) requires solving a tradeoff between using the largest possible battery (so as to maximize the number of deliveries over a given time) and the relative costs (initial investment plus the unnecessary increase of the truck weight during delivery). In this paper, we propose a framework for the optimal battery sizing for parcel delivery with an electric truck; we implement an electric truck simulator including a nonlinear battery model to evaluate revenue, battery cost, charging cost, and overall profit for annual delivery. Our framework finds the cost-optimal battery size for different parcel weight distributions and customer location distributions. We analyze the effect of battery sizing on the profit, which is up to 56%.


Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2866
Author(s):  
Andong Yin ◽  
Shenchun Wu ◽  
Weihan Li ◽  
Jinfang Hu

As an attractive alternative to the traditional plug-in charged electric vehicles (EVs), wireless-charged EVs have recently been in the spotlight. Opportunistically charged utilizing the wireless-charging infrastructure installed under the road at bus stops, an electric bus can have a smaller and lighter battery pack. In this paper, an improved opportunistic wireless-charging system (OWCS) for electric bus is introduced, which includes the opportunistic stationary wireless-charging system (OSWCS) and opportunistic hybrid wireless-charging system (OHWCS) consisting of stationary wireless-charging and dynamic wireless-charging. A general battery reduction model is established for the opportunistic wireless-charged electric bus (OWCEB). Two different battery-reduction models are built separately for OWCEB on account of the characteristics of OSWCS and OHWCS. Additionally, the cost saving models including the production cost saving, the operation cost saving and total cost saving are established. Then, the mathematical models are demonstrated with a numerical example intuitively. Furthermore, we analyze several parameters that influence the effectiveness of battery reduction due to the application of an opportunistic wireless-charging system on an electric bus. Finally, some points worth discussing in this work are performed.


2011 ◽  
Vol 133 (3) ◽  
Author(s):  
Jim B. Himelic ◽  
Frank Kreith

Plug-in hybrid electric vehicles (PHEVs) have the potential of substantially reducing petroleum consumption and vehicular CO2 emissions relative to conventional vehicles. The analysis presented in this article first ascertains the cost-effectiveness of PHEVs from the perspective of the consumer. Then, the potential effects of PHEVs to an electric utility are evaluated by analyzing a simplified hypothetical example. When evaluating the cost-effectiveness of a PHEV, the additional required premium is an important financial parameter to the consumer. An acceptable amount for the additional upfront costs will depend on the future costs of gasoline and the on-board battery pack. The need to replace the on-board battery pack during the assumed vehicle lifetime also affects the allowed premium. A simplified unit commitment and dispatch model was used to determine the costs of energy and the CO2 emissions associated with PHEVs for different charging scenarios. The results show that electricity can be used to charge PHEVs during off-peak hours without an increase in peak demand. In addition, the combined CO2 emissions from the vehicles and the electric generation facilities will be reduced, regardless of the charging strategy.


2019 ◽  
Vol 11 (20) ◽  
pp. 5844 ◽  
Author(s):  
Katsela ◽  
Browne

The main purpose of the paper is to explore the importance of stakeholders’ interaction in the different stages of the implementation process of city logistics initiatives and to assess the extent to which interaction may vary between two apparently similar initiatives. A comparative, longitudinal study, with data from two Swedish city logistics initiatives is conducted. The findings highlight the multiple stakeholders’ interaction and suggest that various degrees of such interaction can be beneficial for sustainable city logistics initiatives. The study demonstrates that although the interactions can be considered broadly similar, there are differences that have an impact on the implementation and development of such initiatives over time. It also highlights the relevance of integrating initiatives with existing networks to provide longer-term viability in the implementation process.


Sign in / Sign up

Export Citation Format

Share Document