Optimal Charging Management of Microgrid-Integrated Electric Vehicles

2022 ◽  
pp. 133-155
Author(s):  
Giulio Ferro ◽  
Riccardo Minciardi ◽  
Luca Parodi ◽  
Michela Robba

The relevance of electric vehicles (EVs) is increasing along with the relative issues. The definition of smart policies for scheduling the EVs charging process represents one of the most important problems. A discrete-event approach is proposed for the optimal scheduling of EVs in microgrids. This choice is due to the necessity of limiting the number of the decision variables, which rapidly grows when a small-time discretization step is chosen. The considered optimization problem regards the charging of a series of vehicles in a microgrid characterized by renewable energy source, a storage element, the connection to the main grid, and a charging station. The objective function to be minimized results from the weighted sum of the cost for purchasing energy from the external grid, the weighted tardiness of the services provided, and a cost related to the occupancy of the socket. The approach is tested on a real case study.

Author(s):  
Giulio Ferro ◽  
Riccardo Minciardi ◽  
Luca Parodi ◽  
Michela Robba

AbstractThe relevance and presence of Electric Vehicles (EVs) are increasing all over the world since they seem an effective way to fight pollution and greenhouse gas emissions, especially in urban areas. One of the main issues related to EVs is the necessity of modifying the existing infrastructure to allow the installation of new charging stations (CSs). In this scenario, one of the most important problems is the definition of smart policies for the sequencing and scheduling of the vehicle charging process. The presence of intermittent energy sources and variable execution times represent just a few of the specific features concerning vehicle charging systems. Even though optimization problems regarding energy systems are usually considered within a discrete time setting, in this paper a discrete event approach is proposed. The fundamental reason for this choice is the necessity of limiting the number of the decision variables, which grows beyond reasonable values when a short time discretization step is chosen. The considered optimization problem regards the charging of a series of vehicles by a CS connected with a renewable energy source, a storage element, and the main grid. The objective function to be minimized results from the weighted sum of the (net) cost for purchasing energy from the external grid, the weighted tardiness of the services provided to the customers, and a cost related to the occupancy of the socket during the charging. The approach is tested on a real case study. The limited computational burden allows also the implementation in real-case applications.


Author(s):  
Funso Kehinde Ariyo ◽  
Oluwafemi Aworo ◽  
Michael Kuku

There have been growing concerns involving the penetration of Electric Vehicles (EVs) due to the time required by its battery to attain full charge. Interests in EVs had recently experienced a dramatic turn down due to mileage limitation on full battery charge amidst the cost of purchase, but most notably due to the absence of quick chargers that can keep the vehicle on the road within few minutes of arriving at the charging station. Researchers had proposed different charging schemes such as level II ac charging, dc charging, and in some cases, wireless charging schemes that later appear to be inefficient. The use of dynamic or simply road-way powered electric vehicles was also proposed in the literature. However, the proposed cycloconverter-based circuit was simulated in Simulink, and the results obtained proved that the rate of charge increased when compared to the conventional EV charging circuit. Also, the focus is on battery charging technology and battery modeling for application in an electric vehicle


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 6120
Author(s):  
Nikolaos Milas ◽  
Dimitris Mourtzis ◽  
Emmanuel Tatakis

During the last decade, the technologies related to electric vehicles (EVs) have captured both scientific and industrial interest. Specifically, the subject of the smart charging of EVs has gained significant attention, as it facilitates the managed charging of EVs to reduce disturbances to the power grid. Despite the presence of an extended literature on the topic, the implementation of a framework that allows flexibility in the definition of the decision-making objectives, along with user-defined criteria is still a challenge. Towards addressing this challenge, a framework for the smart charging of EVs is presented in this paper. The framework consists of a heuristic algorithm that facilitates the charge scheduling within a charging station (CS), and the analytic hierarchy process (AHP) to support the driver of the EV selecting the most appropriate charging station based on their needs of transportation and personal preferences. The communications are facilitated by the Open Platform Communications–Unified Architecture (OPC–UA) standard. For the selection of the scheduling algorithm, the genetic algorithm and particle swarm optimisation have been evaluated, where the latter had better performance. The performance of the charge scheduling is evaluated, in various charging tasks, compared to the exhaustive search for small problems.


Author(s):  
Owen Q. Wu ◽  
Şafak Yücel ◽  
Yangfang (Helen) Zhou

Problem definition: By providing an environmentally friendly alternative to traditional vehicles, electric vehicles will transform urban mobility, particularly in smart cities. In practice, after an electric vehicle is plugged in, the charging station completes charging as soon as possible. Given that the procurement cost of electricity and associated emissions vary significantly during a day, substantial savings can be achieved by smart charging—delaying charging until the cost is lower. In this paper, we study smart charging as an innovative business model for utility firms. Academic/practical relevance: Utility firms are already investing in charging stations, and they can achieve significant cost savings through smart charging. Methodology: We consider a mechanism design problem in which a utility firm first announces pairs of charging price and completion time. Then, each customer selects the pair that maximizes their utility. Given the selected completion times, the utility firm solves the optimal control problem of determining the charging schedule that minimizes the cost of charging under endogenous, time-varying electricity procurement cost. We assume that there are ample parking spots with chargers at the charging station. Results: We devise an intuitive and practically implementable policy for scheduling charging of electric vehicles under given completion times. We prove that this policy is optimal if all customers arrive at the station simultaneously. We also characterize the optimal pairs of charging price and completion time. By using real electricity demand and generation data from the largest electricity market in the United States, we find that cost and emissions savings from smart charging are approximately 20% and 15%, respectively, during a typical summer month. Managerial implications: In contrast to the current practice of charging vehicles without delay, we show that it is economically and environmentally beneficial to delay charging some vehicles and to set charging prices based on customers’ inconvenience cost of delays. We also find that most of the savings from implementing smart charging can be achieved during peak-demand days, highlighting the effectiveness of smart charging.


2021 ◽  
Vol 12 (4) ◽  
pp. 232
Author(s):  
Kai Sheng ◽  
Mahdieh Dibaj ◽  
Mohammad Akrami

While U.K. authorities have attempted to tailor measures to boost sales of electric vehicles (EVs) and support citizens through different schemes, the size and geographic coverage of the existing charging network are insufficient, which undermines electromobility promotion. There are 15,853 public charging points installed in the U.K. as of 3 August 2021, and the demands for public EV charging are rising. For rural areas, there is little support from local authorities or private companies. To identify how a charging station can be installed and work, this study researches existing charging stations nationwide. Generally, most Public Charging Stations (PCS) in rural areas have unsatisfactory cost-effectiveness due to their long payback period. This paper presents how many rural PCS are able to afford the cost in the first eight years. Based on the ever-increasing demands of the market, EV producers are switching their business strategies. Meanwhile, the rural areas may become urban with the same definition. When it comes to the analysis of cost-effectiveness, it is possible for the PCS to bring more elements into the calculation. For Capital Expenditure (CAPEX) and Operation Expenditure (OPEX), the unnecessary cost leaves more profit space, like the possibility of unplanned maintenance costs.


2015 ◽  
Vol 751 ◽  
pp. 176-181
Author(s):  
Guo Zhao ◽  
Xue Liang Huang

According to the coordination and complementation of electric vehicles (EVs) and renewable resources, such as photovoltaic (PV) power generation, a micro gird system including EVs charging station and PV power generation was constructed firstly. Based on the target of maximizing the utilization ratio of PV power, considering the total cost of EVs charging, the time-of-use (TOU) price was introduced to establish the dual-objective optimization scheduling model of EVs charging. Furthermore, NSGA-II multi-objective optimization algorithm was applied to solve the model and the Pareto front of the non-dominated solutions was obtained. Finally, the optimized scheduling control strategy for EVs charging was proposed through normalized sorting of the non-dominated solutions. The optimal scheduling strategy could increase the utilization ratio of PV power on the basis of reducing the cost of EVs charging, promoting the local consumption of PV power.


2020 ◽  
Vol 119 (820) ◽  
pp. 317-322
Author(s):  
Michael T. Klare

By transforming patterns of travel and work around the world, the COVID-19 pandemic is accelerating the transition to renewable energy and the decline of fossil fuels. Lockdowns brought car commuting and plane travel to a near halt, and the mass experiment in which white-collar employees have been working from home may permanently reduce energy consumption for business travel. Renewable energy and electric vehicles were already gaining market share before the pandemic. Under pressure from investors, major energy companies have started writing off fossil fuel reserves as stranded assets that are no longer worth the cost of extracting. These shifts may indicate that “peak oil demand” has arrived earlier than expected.


Systems ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 19
Author(s):  
Mahdi Boucetta ◽  
Niamat Ullah Ibne Hossain ◽  
Raed Jaradat ◽  
Charles Keating ◽  
Siham Tazzit ◽  
...  

Exponential technological-based growth in industrialization and urbanization, and the ease of mobility that modern motorization offers have significantly transformed social structures and living standards. As a result, electric vehicles (EVs) have gained widespread popularity as a mode of sustainable transport. The increasing demand for of electric vehicles (EVs) has reduced the some of the environmental issues and urban space requirements for parking and road usage. The current body of EV literature is replete with different optimization and empirical approaches pertaining to the design and analysis of the EV ecosystem; however, probing the EV ecosystem from a management perspective has not been analyzed. To address this gap, this paper develops a systems-based framework to offer rigorous design and analysis of the EV ecosystem, with a focus on charging station location problems. The study framework includes: (1) examination of the EV charging station location problem through the lens of a systems perspective; (2) a systems view of EV ecosystem structure; and (3) development of a reference model for EV charging stations by adopting the viable system model. The paper concludes with the methodological implications and utility of the reference model to offer managerial insights for practitioners and stakeholders.


1983 ◽  
Vol 31 (1_suppl) ◽  
pp. 60-76
Author(s):  
Patricia A. Morgan

Patricia Morgan's paper describes what happens when the state intervenes in the social problem of wife-battering. Her analysis refers to the United States, but there are clear implications for other countries, including Britain. The author argues that the state, through its social problem apparatus, manages the image of the problem by a process of bureaucratization, professionalization and individualization. This serves to narrow the definition of the problem, and to depoliticize it by removing it from its class context and viewing it in terms of individual pathology rather than structure. Thus refuges were initially run by small feminist collectives which had a dual objective of providing a service and promoting among the women an understanding of their structural position in society. The need for funds forced the groups to turn to the state for financial aid. This was given, but at the cost to the refuges of losing their political aims. Many refuges became larger, much more service-orientated and more diversified in providing therapy for the batterers and dealing with other problems such as alcoholism and drug abuse. This transformed not only the refuges but also the image of the problem of wife-battering.


Sign in / Sign up

Export Citation Format

Share Document