Mechanical properties of the concrete with recycled coarse aggregate surface treated by microbes

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jagan S. ◽  
Neelakantan T.R.

Purpose Scarcity in the construction aggregates necessitated the use of suitable alternative materials such as recycled aggregates. However, the higher porosity of recycled aggregates due to the presence of adhered mortar affects its quality resulting in limited utilization. The purpose of this paper is to investigate the use of Bacillus subtilis to enhance the properties of the recycled coarse aggregate (RCA). The strains of the bacterial species were collected from the Gene bank, Chandigarh, and cultured to 105 cells/ml to treat the RCA. Design/methodology/approach The concrete mixtures are prepared with 0%, 50% and 100% of treated and untreated RCA by mortar mixing approach. The concrete specimens are tested for compressive strength, split tensile strength, flexural strength and elastic modulus at 7, 14 and 28 days, respectively. Findings Microbial treatment to RCAs increased the weight of the aggregate and decreased the water absorption of the aggregates. The optimal replacement of RCA was observed to be 50% and the strength of the concrete with 50% of treated RCA was comparable to the normal aggregate concrete. The CaCO3 precipitation by bacterial species fills the pores on the RCA and thus increasing the strength of the concrete. Originality/value The originality of the research is to produce concrete with waste recycled aggregate treated by bacteria to overcome the problem of scarcity in construction materials.

2008 ◽  
Vol 3 (4) ◽  
pp. 130-137 ◽  
Author(s):  
R Kumutha ◽  
K Vijai

The properties of concrete containing coarse recycled aggregates were investigated. Laboratory trials were conducted to investigate the possibility of using recycled aggregates from the demolition wastes available locally as the replacement of natural coarse aggregates in concrete. A series of tests were carried out to determine the density, compressive strength, split tensile strength, flexural strength and modulus of elasticity of concrete with and without recycled aggregates. The water cement ratio was kept constant for all the mixes. The coarse aggregate in concrete was replaced with 0%, 20%, 40%, 60%, 80% and 100% recycled coarse aggregates. The test results indicated that the replacement of natural coarse aggregates by recycled aggregates up to 40% had little effect on the compressive strength, but higher levels of replacement reduced the compressive strength. A replacement level of 100% causes a reduction of 28% in compressive strength, 36% in split tensile strength and 50% in flexural strength. For strength characteristics, the results showed a gradual decrease in compressive strength, split tensile strength, flexural strength and modulus of elasticity as the percentage of recycled aggregate used in the specimens increased. 100% replacement of natural coarse aggregate by recycled aggregate resulted in 43% savings in the cost of coarse aggregates and 9% savings in the cost of concrete.


Construction is the one the fast growing field in the worldwide. There are many environmental issues connected with the manufacture of OPC, at the same time availability of natural coarse aggregate is getting reduced. Geopolymer binder and recycled aggregates are promising alternatives for OPC and natural coarse aggregates. It is produced by the chemical action of inorganic molecules and made up of Fly Ash, GGBS, fine aggregate, coarse aggregate and an alkaline solution of sodium hydroxide and sodium silicate. 10 M sodium hydroxide and sodium silicate alkali activators are used to synthesis the geopolymer in this study. Recycled aggregates are obtained from the construction demolished waste. The main focus of this work is to find out the mechanical properties of geopolymer concrete of grade G40 when natural coarse aggregate(NCA) is replaced by recycled coarse aggregate in various proportions such as 0%, 10%, 20%, 30%,40% and 50% and also to compare the results of geopolymer concrete made with recycled coarse aggregates(RAGPC) with geopolymer concrete of natural coarse aggregate(GPC) and controlled concrete manufactured with recycled aggregates(RAC) and controlled concrete of natural coarse aggregates(CC) of respective grade. It has been observed that the mechanical properties are enhanced in geopolymer concrete, both in natural coarse aggregate and recycled coarse aggregate up to 30% replacement when it is compared with the same grade of controlled concrete.


Author(s):  
Suhas Vijay Patil ◽  
Balakrishna Rao K. ◽  
Gopinatha Nayak

Recycled aggregates (RA) are obtained from construction and demolished waste, laboratory crushed concrete and concrete waste at RMC plants. The concrete made from recycled aggregate is known as recycled aggregate concrete. The use of recycled aggregate is very beneficial to the environment in civil works. Its usage also helps in financial saving as the cost of transportation and production energy cost of natural coarse aggregate (NCA) is reduced. In India, the recycled aggregate application in lower grade concrete work is observed. However, the effect of recycled aggregate on the strength and durability of concrete restricts its use in higher-grade work. This paper presents a series of tests carried out on recycled coarse aggregate (RCA) and recycled coarse aggregate concrete (RCAC) and test results are compared with the NCA and parent concrete made from NCA. Tests were carried out as per IS code and concrete was prepared using a two-stage mixing approach in the concrete mix design. M30 concrete mix of four RCAC samples was tested at 28 days of curing and in comparison with parent concrete, it is found that on an average compressive strength is decreased by 12.89% at 28 days curing. Adhered mortar increases the porosity of the recycled aggregate and forms a weak zone between aggregate surface and mortar. In addition, test results showed the defects in recycled aggregate and helped to identify the area where concentration is necessary to improve the quality of recycled aggregate using six sigma DMAIC methodology. Total of 12 defects were found in the process and raw material. Statistical analysis was used to evaluate the performance of all the mix made with RCA.


2011 ◽  
Vol 147 ◽  
pp. 288-292 ◽  
Author(s):  
Yong Taeg Lee ◽  
Seong Uk Hong ◽  
Hyun Suk Jang ◽  
Sang Ki Baek ◽  
Young Sang Cho

National effort to recycle construction waste as structural concrete usage of high economic value is ongoing, but performance rate of recycling is a low-level due to a lack of awareness on the recycled aggregates. Accordingly, the goal of this study was to verify the structural applicability of recycled aggregates. This study compared a compressive strength based on the replacement ratio of natural aggregate and recycled aggregate, and analyzed a correlation of wave velocity due to the increase in compressive strength under the same condition. The 『design standard strength – replacement ratio of recycled coarse aggregate』 was set to total 12 combinations by applying 0, 30, 50, 100[%] replacement ratio of recycled coarse aggregate to 21, 27, 35[MPa] to the design standard strength. During the experiment of fracture strength, strength degradation due to the replacement rate of recycled coarse aggregate did not occur, and it was found that the wave velocity also increased along with an increase in strength due to the age of recycled coarse aggregate concrete.


2011 ◽  
Vol 368-373 ◽  
pp. 2185-2188
Author(s):  
Ping Hua Zhu ◽  
Xin Jie Wang ◽  
Jin Cai Feng

The properties of recycled coarsee aggregates from repeatedly recycling waste concrete were determined. In this study, five series of concrete mixtures using coarse and fine natural aggregates were prepared, which have the same objective slump value from 35mm to 50mm and different compressive strengths ranging from 25MPa to 60 MPa. These five concretes were crushed, sieved, washed with water, hot treatmented at 300°C before they were used as recycled aggregates. After that, recycled aggregate concrete (RAC) was produced with an objectively compressive strength of 30MPa, in which the recycled coarse aggregate was used as 30%, 70% and 90% replacements of natural coarse aggregate and recycled fine aggregate as 10%, 20%, and 30% replacements of natural fine aggregate. After that, these recycled concretes were used as second recycled aggregates to produce RAC with the same objectively compressive strength of 30MPa. The physical properties of coarse aggregates including apparent density, water absorption, attached mortar content and crushing value were tested and their mineral characteristics were analyzed. The results showed that the quality of recycled coarse aggregates from twicely recycling waste concrete reached the requirements from structural concrete.


2018 ◽  
Vol 6 (3) ◽  
pp. 220-227
Author(s):  
Suriya ◽  
Sneha ◽  
Mohan Kumar

The increasing demand and scarcity of construction materials like cement and aggregates make the researches all over the world nowadays to focus on finding ways of utilizing industrial wastes and demolished wastes as source of raw materials and eco-friendly alternatives for concrete ingredients. Using recycled aggregates in concrete leads to preservation of the environment and promotes sustainable development. Recycled aggregate is obtained after crushing and screening of the construction rubble from tested laboratory specimens like cubes and cylinders. Sugarcane bagasse ash, the by-product of Sugarcane is the most fibrous material and contains alumina and silica. Bagasse ash used not only to reduce consumption of cement, cost of making concrete and pollution of the environment but also consumes the excess calcium present in the cement improving the durability related properties of concrete. In this work, mix design for conventional M20 grade concrete is made. Based on the literature survey, conventional coarse aggregate is partially replaced by 30% with recycled coarse aggregate. In this 30% recycled aggregate contained concrete, cement is partially replaced by 0, 5, 10, 15 and 20% with Sugarcane bagasse ash. Experimental study was carried out to investigate the mechanical properties. Based on the test results, the optimum replacement level of cement with Sugarcane bagasse ash is observed as 15% for overall efficiency.


2012 ◽  
Vol 5 (5) ◽  
pp. 692-701 ◽  
Author(s):  
J. J. L. Tenório ◽  
P. C. C. Gomes ◽  
C. C. Rodrigues ◽  
T. F. F. de Alencar

This paper presents the analysis of the mechanical and durable properties of recycled aggregate concrete (RAC) for using in concrete. The porosity of recycled coarse aggregates is known to influence the fresh and hardened concrete properties and these properties are related to the specific mass of the recycled coarse aggregates, which directly influences the mechanical properties of the concrete. The recycled aggregates were obtained from construction and demolition wastes (CDW), which were divided into recycled sand (fine) and coarse aggregates. Besides this, a recycled coarse aggregate of a specific mass with a greater density was obtained by mixing the recycled aggregates of the CDW with the recycled aggregates of concrete wastes (CW). The concrete was produced in laboratory by combining three water-cement ratios, the ratios were used in agreement with NBR 6118 for structural concretes, with each recycled coarse aggregates and recycled sand or river sand, and the reference concrete was produced with natural aggregates. It was observed that recycled aggregates can be used in concrete with properties for structural concrete. In general, the use of recycled coarse aggregate in combination with recycled sand did not provide good results; but when the less porous was used, or the recycled coarse aggregate of a specific mass with a greater density, the properties of the concrete showed better results. Some RAC reached bigger strengths than the reference concrete.


Author(s):  
Juliane Patricia Oliveira ◽  
Carlos Henrique Dos Santos ◽  
Maria Lúcia Okumura ◽  
Natália Ueda Yamaguchi

The construction sector is considered a major generator of environmental impacts due to the high consumption of natural resources and waste generation. Thus, this article aims to evaluate the performance of a concrete produced by the partial and total replacement of natural coarse aggregate by recycled coarse aggregate, derived from the concrete residue of buildings and demolitions. The study was made by comparing the compressive strength and absorption of three different concrete traces, keeping the water/cement factor of 0.60 and changing only the proportions of recycled coarse aggregate between 0%, 50% and 100%. The results showed that the higher the percentage of substitution, the greater the water absorption and the lower the resistance results concrete compression. This result was obtained due to the lighter characteristic of the recycled aggregate compared to the natural aggregate. It was concluded that the concrete produced with recycled aggregates could be used in nonstructural functions, giving an adequate destination to the construction and demolition waste and consequently reducing the extraction and consumption of natural resources and contributing for the sustainable development.


Author(s):  
N. Uday Kiran ◽  
S. Hanmanthu ◽  
C. Govardhan

In the present work, an experimental investigation was carried out on self-compacting concrete made with various replacement levels of recycled coarse aggregate. The main aim of the experimental work is to know the suitability and effects of recycled aggregates in SCC. Self-Compacting Concrete is a type of concrete which does not need any kind of vibration or compaction. In the present experimental work, the behaviour of concrete made with recycled aggregates is evaluated and compared with the traditional concrete in which the coarse aggregate is replaced with recycled aggregate by 0%, 50%, and 100% respectively. Mechanical properties of the concrete were evaluated in its fresh and hardened conditions.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Suhas Vijay Patil ◽  
K. Balakrishna Rao ◽  
Gopinatha Nayak

Purpose Recycling construction waste is a promising way towards sustainable development in construction. Recycled aggregate (RA) is obtained from demolished concrete structures, laboratory crushed concrete, concrete waste at a ready mix concrete plant and the concrete made from RA is known as RA concrete. The purpose of this study is to apply multiple linear regressions (MLRs) and artificial neural network (ANN) to predict the mechanical properties, such as compressive strength (CS), flexural strength (FS) and split tensile strength (STS) of concrete at the age of 28 days curing made completely from the recycled coarse aggregate (RCA). Design/methodology/approach MLR and ANN are used to develop a prediction model. The model was developed in the training phase by using data from a previously published research study and a developed model was further tested by obtaining data from laboratory experiments. Findings ANN shows more accuracy than MLR with an R2-value of more than 0.8 in the training phase and 0.9 in a testing phase. The high R2-value indicates strong relation between the actual and predicted values of mechanical properties of RCA concrete. These models will help construction professionals to save their time and cost in predicting the mechanical properties of RCA concrete at 28 days of curing. Originality/value ANN with rectified linear unit transfer function and backpropagation algorithm for training is used to develop a prediction model. The outcome of this study is the prediction model for CS, FS and STS of concrete at 28 days of curing.


Sign in / Sign up

Export Citation Format

Share Document