The Thin Solid Membrane Structure Design of Imitated Dragonfly Wing Adopting Different Transition Structure

Author(s):  
Chunxiang Pan ◽  
Jiyu Sun ◽  
Zhenpeng Chen
2014 ◽  
Vol 14 (04) ◽  
pp. 1450078 ◽  
Author(s):  
JIYU SUN ◽  
MINGZE LING ◽  
CHUNXIANG PAN ◽  
DONGHUI CHEN ◽  
JIN TONG ◽  
...  

Scientists have carried out research for various biomimetic applications based on the dragonfly wings because of the superb flying skills and lightsome posture. The wings of dragonflies are mainly composed of veins and membranes, which give rise to the special characteristics of their wings that make dragonflies being supremely versatile, maneuverable fliers. Mimicking the dragonfly wing motion is of great technological interest from application's point of view. However, the major challenge is the biomimetic fabrication to replicate the wing motion due to the very complex nature of the wing venation of dragonfly wings. In this regard, the topology optimization method (TOM) is useful to simplify object's structure while retaining its mechanical properties. In this paper, TOM is employed to simplify and optimize the venation structure of dragonfly (Pantala flavescens Fabricius) wing that is captured by a 3D scanner and numerical reconfiguration. Combined with the material parameters obtained from nanoindentation testing, the quantitative models are established based on a finite element (FE) analysis and discussed in static range. The quantitative models are then compared with the square frame, staggered grid frame and hexagonal frame to examine the potentials of the biomimetic structure design for the fabrication of greenhouse roof.


2010 ◽  
Vol 102-104 ◽  
pp. 297-300
Author(s):  
Ning Huang ◽  
Ming Hui Huang ◽  
Li Hua Zhan

The purpose of the present study is to propose a new technical method for improving the fatigue life of a panel with big grooves by setting rounded transition structure and stress relief slots in the vicinity of it. The main idea of the method is to reduce the stress concentration at the edges of rounded transition structure. To confirm the effectiveness of the method, analyses were performed by using software for two-dimensional elastic problems based on the body-force method. The calculation results show that the existence of stress relief slots effectively reduced the stress concentration at the edges of rounded transition structure. A close distance between the rounded transition structure and the stress relief groove resulted in a little influence of stress concentration at the edge of rounded transition structure. Also, a lower stress concentration was obtained by increasing the diameter and numbers of stress relief grooves. Results prove the effectiveness and certain engineering practicability of this method. The method is helpful for structure design.


Author(s):  
Robert M. Glaeser ◽  
David W. Deamer

In the investigation of the molecular organization of cell membranes it is often supposed that lipid molecules are arranged in a bimolecular film. X-ray diffraction data obtained in a direction perpendicular to the plane of suitably layered membrane systems have generally been interpreted in accord with such a model of the membrane structure. The present studies were begun in order to determine whether selected area electron diffraction would provide a tool of sufficient sensitivity to permit investigation of the degree of intermolecular order within lipid films. The ultimate objective would then be to apply the method to single fragments of cell membrane material in order to obtain data complementary to the transverse data obtainable by x-ray diffraction.


Author(s):  
H. K. Plummer ◽  
E. Eichen ◽  
C. D. Melvin

Much of the work reported in the literature on cellulose acetate reverse osmosis membranes has raised new and important questions with regard to the dense or “active” layer of these membranes. Several thickness values and structures have been attributed to the dense layer. To ensure the correct interpretation of the cellulose acetate structure thirteen different preparative techniques have been used in this investigation. These thirteen methods included various combinations of water substitution, freeze drying, freeze sectioning, fracturing, embedding, and microtomy techniques with both transmission and scanning electron microscope observations.It was observed that several factors can cause a distortion of the structure during sample preparation. The most obvious problem of water removal can cause swelling, shrinking, and folds. Improper removal of embedding materials, when used, can cause a loss of electron image contrast and, or structure which could hinder interpretation.


Author(s):  
E. L. Vigil ◽  
E. F. Erbe

In cotton seeds the radicle has 12% moisture content which makes it possible to prepare freeze-fracture replicas without fixation or cryoprotection. For this study we have examined replicas of unfixed radicle tissue fractured at room temperature to obtain data on organelle and membrane structure.Excised radicles from seeds of cotton (Gossyplum hirsutum L. M-8) were fractured at room temperature along the longitudinal axis. The fracture was initiated by spliting the basal end of the excised radicle with a razor. This procedure produced a fracture through the tissue along an unknown fracture plane. The warm fractured radicle halves were placed on a thin film of 100% glycerol on a flat brass cap with fracture surface up. The cap was rapidly plunged into liquid nitrogen and transferred to a freeze- etch unit. The sample was etched for 3 min at -95°C to remove any condensed water vapor and then cooled to -150°C for platinum/carbon evaporation.


Author(s):  
M. H. Chen ◽  
C. Hiruki

Wheat spot mosaic disease was first discovered in southern Alberta, Canada, in 1956. A hitherto unidentified disease-causing agent, transmitted by the eriophyid mite, caused chlorosis, stunting and finally severe necrosis resulting in the death of the affected plants. Double membrane-bound bodies (DMBB), 0.1-0.2 μm in diameter were found to be associated with the disease.Young tissues of leaf and root from 4-wk-old infected wheat plants were fixed, dehydrated, and embedded in Spurr’s resin. Serial sections were collected on slot copper grids and stained. The thin sections were then examined with a Hitachi H-7000 TEM at 75 kV. The membrane structure of the DMBBs was studied by numbering them individually and tracing along the sections to see any physical connection with endoplasmic reticulum (ER) membranes. For high resolution scanning EM, a modification of Tanaka’s method was used. The specimens were examined with a Hitachi Model S-570 SEM in its high resolution mode at 20 kV.


Sign in / Sign up

Export Citation Format

Share Document