Energy balance in electric circuits with nonsinusoidal voltage and current

1997 ◽  
Vol 12 (4) ◽  
pp. 1507-1510 ◽  
Author(s):  
H.V. Agunov ◽  
A.V. Agunov ◽  
I.G. Globenco
1994 ◽  
Vol 144 ◽  
pp. 315-321 ◽  
Author(s):  
M. G. Rovira ◽  
J. M. Fontenla ◽  
J.-C. Vial ◽  
P. Gouttebroze

AbstractWe have improved previous model calculations of the prominence-corona transition region including the effect of the ambipolar diffusion in the statistical equilibrium and energy balance equations. We show its influence on the different parameters that characterize the resulting prominence theoretical structure. We take into account the effect of the partial frequency redistribution (PRD) in the line profiles and total intensities calculations.


1977 ◽  
Vol 36 ◽  
pp. 143-180 ◽  
Author(s):  
J.O. Stenflo

It is well-known that solar activity is basically caused by the Interaction of magnetic fields with convection and solar rotation, resulting in a great variety of dynamic phenomena, like flares, surges, sunspots, prominences, etc. Many conferences have been devoted to solar activity, including the role of magnetic fields. Similar attention has not been paid to the role of magnetic fields for the overall dynamics and energy balance of the solar atmosphere, related to the general problem of chromospheric and coronal heating. To penetrate this problem we have to focus our attention more on the physical conditions in the ‘quiet’ regions than on the conspicuous phenomena in active regions.


Author(s):  
B Otto ◽  
H Rochlitz ◽  
M Möhlig ◽  
L Burget ◽  
J Kampe ◽  
...  
Keyword(s):  

2005 ◽  
Vol 43 (10) ◽  
Author(s):  
B Otto ◽  
F Lippl ◽  
P Pfluger ◽  
J Spranger ◽  
U Cuntz ◽  
...  
Keyword(s):  

Author(s):  
Bharti Saraswat ◽  
Ashok Yadav ◽  
Krishna Kumar Maheshwari

Background- Electric burns and injuries are the result of electric current passing through the body. Temporary or permanent damage can occur to the skin, tissues, and major organs. Methods- This prospective study was carried out on patients admitted in burn unit of department of surgery M.G. Hospital associated with Dr. S.N. Medical College Jodhpur. Records of the patients admitted from January 2018 to December 2018 were studied. Bed head tickets of the patients evaluated in detail. Results- In our study out of 113 patients maximum no. of patients were in age group of 21-30 years 44 (38.94%) followed by age group <11 years in 21 (18.58%) patients and age group of > 60 years in only 3 (2.65%).39 (34.51%) patients were farmer and 15 (13.27%) were electrician in out of 113 total patients, while 37 (32.74%) were without any occupation. 65 (57.52%) cases of high voltage (HV) electrical injury and 48 (42.48%) cases were of low voltage (LV) electrical injury. Conclusion- Morbidity leading to permanent disabilities make the person physically dependent on others. It can be prevented by educating the people about the proper handling to electric circuits & devices. Proper communication among the electricians may help in lowering such accidents. Proper rehabilitation of the handicapped person & employment to the member of the affected family may reduce the social burden caused by such electricity concerned accidents.


2020 ◽  
Vol 2 (1) ◽  
pp. 19-24
Author(s):  
Sakhr Mohammed Sultan ◽  
Chih Ping Tso ◽  
Ervina Efzan Mohd Noor ◽  
Fadhel Mustafa Ibrahim ◽  
Saqaff Ahmed Alkaff

Photovoltaic Thermal Solar Collector (PVT) is a hybrid technology used to produce electricity and heat simultaneously. Current enhancements in PVT are to increase the electrical and thermal efficiencies. Many PVT factors such as type of absorber, thermal conductivity, type of PV module and operating conditions are important parameters that can control the PVT performance. In this paper, an analytical model, using energy balance equations, is studied for PVT with an improved parallel flow absorber. The performance is calculated for a typical sunny weather in Malaysia. It was found that the maximum electrical and thermal efficiencies are 12.9 % and 62.6 %, respectively. The maximum outlet water temperature is 59 oC.


2019 ◽  
Vol 139 (5) ◽  
pp. 302-308 ◽  
Author(s):  
Shinji Yamamoto ◽  
Soshi Iwata ◽  
Toru Iwao ◽  
Yoshiyasu Ehara

Sign in / Sign up

Export Citation Format

Share Document