Methodology for optimally sizing the combination of a battery bank and PV array in a wind/PV hybrid system

1996 ◽  
Vol 11 (2) ◽  
pp. 367-375 ◽  
Author(s):  
B.S. Borowy ◽  
Z.M. Salameh
Keyword(s):  
Pv Array ◽  
2016 ◽  
Vol 2016 ◽  
pp. 1-16 ◽  
Author(s):  
Vincent Anayochukwu Ani

This paper reports the experience acquired with a photovoltaic (PV) hybrid system simulated as an alternative to diesel system for a residential home located in Southern Nigeria. The hybrid system was designed to overcome the problem of climate change, to ensure a reliable supply without interruption, and to improve the overall system efficiency (by the integration of the battery bank). The system design philosophy was to maximize simplicity; hence, the system was sized using conventional simulation tool and representative insolation data. The system includes a 15 kW PV array, 21.6 kWh (3600 Ah) worth of battery storage, and a 5.4 kW (6.8 kVA) generator. The paper features a detailed analysis of the energy flows through the system and quantifies all losses caused by PV charge controller, battery storage round-trip, rectifier, and inverter conversions. In addition, simulation was run to compare PV/diesel/battery with diesel/battery and the results show that the capital cost of a PV/diesel hybrid solution with batteries is nearly three times higher than that of a generator and battery combination, but the net present cost, representing cost over the lifetime of the system, is less than one-half of the generator and battery combination.


2021 ◽  
Vol 11 (21) ◽  
pp. 10191
Author(s):  
Hoda Abd El-Sattar ◽  
Salah Kamel ◽  
Hamdy Sultan ◽  
Marcos Tostado-Véliz ◽  
Ali M. Eltamaly ◽  
...  

This paper presents an analysis and optimization of an isolated hybrid renewable power system to operate in the Alrashda village in the Dakhla Oasis, which is situated in the New Valley Governorate in Egypt. The proposed hybrid system is designed to integrate a biomass system with a photovoltaic (PV), wind turbine (WT) and battery storage system (Bat). Four different cases are proposed and compared for analyzing and optimizing. The first case is a configuration of PV and WT with a biomass system and battery bank. The second case is the integration of PV with a biomass system and battery bank. The third case is WT integrated with biomass and a battery bank, and the fourth case is a conventional PV, WT, and battery bank as the main storage unit. The optimization is designed to reduce component oversizing and ensure the dependable control of power supplies with the objective function of reducing the levelized cost of energy and loss of power supply probability. Four optimization algorithms, namely Heap-based optimizer (HBO), Franklin’s and Coulomb’s algorithm (CFA), the Sooty Tern Optimization Algorithm (STOA), and Grey Wolf Optimizer (GWO) are utilized and compared with each other to ensure that all load demand is met at the lowest energy cost (COE) for the proposed hybrid system. The obtained results revealed that the HBO has achieved the best optimal solution for the suggested hybrid system for case one and two, with the minimum COE 0.121171 and 0.1311804 $/kWh, respectively, and with net present cost () of $3,559,143 and $3,853,160, respectively. Conversely, STOA has achieved the best optimal solution for case three and four, with a COE of 0.105673 and 0.332497 $/kWh, and an NPC of $3,103,938 and $9,766,441, respectively.


Author(s):  
Vinay Kumar Kolakaluri ◽  
C. Vyjayanthi ◽  
Suresh Mikkili

Abstract Partial Shading Condition (PSC) is one of the key issues faced by Solar Photovoltaic (PV) systems. PSCs mainly occur due to clouds, shadows of trees/buildings, dust and so on. During the PSC, the shaded PV module acts like a sink and absorbs the power from highest irradiated modules in a string and leads to hotspot. This situation is highly vulnerable and has to be avoided. Bypass diodes are used in series configured PV modules to overcome the hotspot effect caused due to PSC. However, the use of bypass diodes leads to multiple peaks in the Power-Voltage (P-V) graph of a PV array. One among them is Global peak point, where PV array needs to operate under PSC. In such a case, some amount of power generated by the shaded modules gets wasted, which will lead to poor performance and efficiency of the overall system. Moreover, for standalone DC load applications an auxiliary supply also required to provide reliable supply to the load during night times and PSC. Normally, batteries are used in standalone systems as an auxiliary supply. To control the charging and discharging process of battery a bi-directional DC-DC converter is used as a charge/discharge controller. The amount of power that is being charged/discharged by batteries depends upon the load requirement and solar power availability. Under PSC, due to lack of extraction of PV power from shaded modules, batteries have to supply the deficient power to the load. This situation forces to increase the AH capacity of the battery to provide reliable supply. In this research article PV-Battery Hybrid system is proposed to improve the performance of PV under varying irradiance and load conditions with reduced AH capacity of battery for standalone DC loads. The performance assessment of proposed topology has been carried out with the comparison of percentage improvement in power extraction, percentage reduction in the average current consumption of battery and SoC delivered by battery with conventional methodologies of bypass diode and proposed methodology under PSC. The assessment is carried out on MATLAB/SIMULINK and results are presented.


Author(s):  
G. Giftson Samuel ◽  
M. Muthuramaligam ◽  
P. S. Manoharan ◽  
C. Christober Asir Rajan

<p><span lang="EN-US">In this paper, supervisor control for stand-alone hybrid power system to supply energy to resistance load is presented. The hybrid system is used to produce energy withoutinterruption and it consists of a photovoltaic generator (PV), and a battery bank. PV system work in parallel via DC/DC converter and the battery bank is used to store the excess of energy. The mathematical model topology, the identification of each subsystem and the control supervision of theglobal system are the contribution of this paper. Obtained results under Matlab/Simulink presented and discussed.</span></p>


2014 ◽  
Vol 29 (6) ◽  
pp. 600-607 ◽  
Author(s):  
Peter W. McCahill ◽  
Erin E. Noste ◽  
AJ Rossman ◽  
David W. Callaway

AbstractIntroductionDisasters create major strain on energy infrastructure in affected communities. Advances in microgrid technology offer the potential to improve “off-grid” mobile disaster medical response capabilities beyond traditional diesel generation. The Carolinas Medical Center's mobile emergency medical unit (MED-1) Green Project (M1G) is a multi-phase project designed to demonstrate the benefits of integrating distributive generation (DG), high-efficiency batteries, and “smart” energy utilization in support of major out-of-hospital medical response operations.MethodsCarolinas MED-1 is a mobile medical facility composed of a fleet of vehicles and trailers that provides comprehensive medical care capacities to support disaster response and special-event operations. The M1G project partnered with local energy companies to deploy energy analytics and an energy microgrid in support of mobile clinical operations for the 2012 Democratic National Convention (DNC) in Charlotte, North Carolina (USA). Energy use data recorded throughout the DNC were analyzed to create energy utilization models that integrate advanced battery technology, solar photovoltaic (PV), and energy conservation measures (ECM) to improve future disaster response operations.ResultsThe generators that supply power for MED-1 have a minimum loading ratio (MLR) of 30 kVA. This means that loads below 30 kW lead to diesel fuel consumption at the same rate as a 30 kW load. Data gathered from the two DNC training and support deployments showed the maximum load of MED-1 to be around 20 kW. This discrepancy in MLR versus actual load leads to significant energy waste. The lack of an energy storage system reduces generator efficiency and limits integration of alternative energy generation strategies. A storage system would also allow for alternative generation sources, such as PV, to be incorporated. Modeling with a 450 kWh battery bank and 13.5 kW PV array showed a 2-fold increase in potential deployment times using the same amount of fuel versus the current conventional system.ConclusionsThe M1G Project demonstrated that the incorporation of a microgrid energy management system and a modern battery system maximize the MED-1 generators’ output. Using a 450 kWh battery bank and 13.5 kW PV array, deployment operations time could be more than doubled before refueling. This marks a dramatic increase in patient care capabilities and has significant public health implications. The results highlight the value of smart-microgrid technology in developing energy independent mobile medical capabilities and expanding cost-effective, high-quality medical response.McCahillPW, NosteEE, RossmanAJ, CallawayDW. Integration of energy analytics and smart energy microgrid into mobile medicine operations for the 2012 Democratic National Convention. Prehosp Disaster Med. 2014;29(6):1-8.


Author(s):  
T. M. N. T. Mansur ◽  
N. H. Baharudin ◽  
R. Ali

<p>Malaysia is moving forward by promoting used of renewable energy such as solar PV to the public where it is generated at the distribution voltage level. The fluctuation of fuel prices becomes main concern to the consumers since it affecting the electricity tariff. The objective of this project is to design a self-consumed DC power system for a residential house from renewable energy resource which is solar PV that it will independent from the utility grid. The methodology proposed are configuring daily load demand, sizing PV array and battery bank and simulation of the design system by using PVsyst. Based on solar energy resource, the optimum PV array size is 2.0 kWp while the battery bank size is 700 Ah at 48 V which is designated for 4 days of autonomy. The system could meet 100% of load demand throughout the year with 67.9% of performance ratio. The loss to the system is contributed by the temperature effect to the PV module, unused energy because of battery full capacity, converter and battery efficiencies. Using this concept, the proposed design set-up is expected to benefit the residential consumers in reducing utility electricity consumption up to 2,434 kWh per year and avoiding 1.7 tons of carbon emissions into the environment annually.</p>


2021 ◽  
Author(s):  
◽  
Ranganai Tawanda Moyo

Solar energy powered systems are increasingly being implemented in different areas due to the advances in solar energy technologies. Some of the major areas for solar energy applications include solar water heating, solar electric power generation, and solar water pumping. Solar water pumping has become the most adopted solar energy technology in the last decade. It has been considered as an attractive way to provide water in remote areas. A major advantage of using solar water pumps is that they are naturally matched with solar irradiation since usually water demand is high in summer when solar irradiation has its maximum values. However, solar energy powered systems are weather dependent. In most cases, a solar energy source has to be combined with another energy source to form a hybrid system to overcome the demerits of using solar alone. This thesis provides the detailed design, modelling and analysis of an Artificial Intelligence (AI) based solar/diesel hybrid water pumping system. This research aims to develop an optimization model that uses AI techniques to maximize the solar energy output and manage the energy flow within the solar/diesel hybrid water pumping. Thus, the proposed system is composed of solar photovoltaic modules, battery bank, Variable Speed Diesel Generator (VSDG), Adaptive Neuro-Fuzzy Inference System (ANFIS) based Maximum Power Point Tracking (MPPT) controllers and an Energy Management Controller (EMC). The EMC, which is based on Fuzzy Logic (FL), is responsible for managing the flow of energy throughout the hybrid system to ensure an undisturbed power supply to the water pump. The PV array, battery bank, VSDG are all sized to power a 5Hp DC water pump and the ANFIS based MPPT controllers are proposed for improving the efficiency of PV modules. The modelling of the system components is performed in the MATLAB/Simulink environment. For evaluation of the proposed system, several case scenarios were considered and simulated in the MATLAB/Simulink environment. The simulation results revealed the effectiveness of the proposed ANFIS based MPPT controllers since the controllers were able to extract maximum available power from PV modules for both steady-state and varying weather conditions. The proposed EMC demonstrated the successful management and control of the energy flow within the hybrid system with less dependency on the VSDG. The EMC was also able to regulate the charging and discharging of the battery bank.


Author(s):  
Fortune Chukwuebuka Amanze ◽  
Destiny Josiah Amanze

Presented in this study is an economic and technical evaluation to determine the optimal system combination for off-grid power generation based on solar, wind and biodiesel renewable energy resource. Nsukka being endowed with high intensity solar radiation, adequate wind speed and sufficient bioresource is a prospective candidate for a hybrid system. The monthly average daily global radiation ranges from 3.91kWh/m2 to 5.74kWh/m2 and the average wind speed is about 2.64m/s. This system was designed to meet the load requirement of the school with annual electrical demand of 10,163 MWh. Sensitivity analysis was carried out based on the effect of change in biodiesel fuel price and interest rates on the economic performance criteria of the optimal configuration. The optimum hybrid system is composed of 1kW capacity PV system, auto sized biodiesel generator and battery bank of 820h of autonomy. The Levelized Cost of Energy from the optimal system was found to be $0.0898/kWh based on sensitivity results. These results obtained shows that an integrated system with combination of PV, biodiesel generator and battery bank is a cost-effective alternative to grid extension which cost $0.126/kWh. The system life span is for 25years and it is sustainable, economical, technically feasible and environmentally friendly.


Author(s):  
H Rempp ◽  
S Clasen ◽  
M Voigtländer ◽  
S Kempf ◽  
A Weihusen ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document