scholarly journals Control of a stand-alone photovoltaic/battery bank system to supply energy to resistance load

Author(s):  
G. Giftson Samuel ◽  
M. Muthuramaligam ◽  
P. S. Manoharan ◽  
C. Christober Asir Rajan

<p><span lang="EN-US">In this paper, supervisor control for stand-alone hybrid power system to supply energy to resistance load is presented. The hybrid system is used to produce energy withoutinterruption and it consists of a photovoltaic generator (PV), and a battery bank. PV system work in parallel via DC/DC converter and the battery bank is used to store the excess of energy. The mathematical model topology, the identification of each subsystem and the control supervision of theglobal system are the contribution of this paper. Obtained results under Matlab/Simulink presented and discussed.</span></p>

2013 ◽  
Vol 448-453 ◽  
pp. 2326-2334 ◽  
Author(s):  
Yan Ping Li ◽  
Li Liu ◽  
Xiao Hui Zhang ◽  
Shang Tao Shi ◽  
Chang Wei Guo

As the aviation has realized the seriousness of pollution and emission issues, people have taken efforts to use renewable energy on planes or UAVs. This paper focused on the applications of solar and hydrogen energy to UAVs. A hybrid power system, consisting of solar cells, fuel cells and lithium batteries, was discussed. To achieve the hybridization of power sources, a prototype of a power management unit (PMU) was fabricated. After the installation of a test system for synthesizing power sources, PMU and load, a series of ground tests were executed to verify the mathematical model of lithium battery and the reliability of the hardware. Ground data confirmed the feasibility of hybrid power system.


Author(s):  
A I Ryazanov

This paper describes the aerohydrodvnamics of processes in chambers of Gorlov's hydro-pneumatic power system. The mathematical model is developed to determine the main parameters of the processes: water and air velocities, air pressure in the chamber, the periods of time required to fill and empty the chambers and the output of energy during the cycle. The results obtained are in agreement with experimental data and model tests.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2781
Author(s):  
Yue Zhou ◽  
Hussein Obeid ◽  
Salah Laghrouche ◽  
Mickael Hilairet ◽  
Abdesslem Djerdir

In order to improve the durability and economy of a hybrid power system composed of a battery and supercapacitors, a control strategy that can reduce fluctuations of the battery current is regarded as a significant tool to deal with this issue. This paper puts forwards a disturbance rejection control strategy for a hybrid power system taking into account the degradation of the battery. First, the degradation estimation of the battery is done by the model-driven method based on the degradation model and Cubature Kalman Filter (CKF). Considering the transient and sinusoidal disturbance from the load in such a hybrid system, it is indispensable to smooth the behavior of the battery current in order to ensure the lifespan of the battery. Moreover, the constraints for the hybrid system should be considered for safety purposes. In order to deal with these demands, a cascaded voltage control loop based on a super twisting controller and proportional integral controller with an anti-windup scheme is designed for regulating the DC bus voltage in an inner voltage loop and supercapacitors’ voltage in an outer voltage loop, respectively. The specific feature of the proposed control method is that it operates like a low-pass filter so as to reduce the oscillations on the DC bus.


Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2237 ◽  
Author(s):  
Andrew Swingler ◽  
Jordan Torrealba

In this communication, the measured behaviour of a lead-acid battery bank within a stand-alone residential solar photovoltaic (PV)-genset-battery hybrid power system in Canada is presented and discussed. In order to capture rare field-based battery performance data, a newly commissioned lead-acid battery bank was equipped with a battery monitoring device capable of logging voltage, current, temperature and amp-hours every 30 s for the life of the battery. The measured data captures a severe loss of battery capacity due to a combination of short-term deep discharge and extended partial state of charge operation—conditions not unusual during winter season PV-genset-battery hybrid power system operation. Subsequent manual override of the system control set points to encourage gradual battery overcharge are shown to recover the lead-acid battery bank’s performance over the following three months. Limitations of the power conversion system’s battery management approach are discussed and a novel closed loop control system for improving lead-acid based PV-genset-battery hybrid system performance is rationalized and proposed for further research.


2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Mohamed M. Albarghot ◽  
M. Tariq Iqbal ◽  
Kevin Pope ◽  
Luc Rolland

The combination of a fuel cell and batteries has promising potential for powering autonomous vehicles. The MUN Explorer Autonomous Underwater Vehicle (AUV) is built to do mapping-type missions of seabeds as well as survey missions. These missions require a great deal of power to reach underwater depths (i.e., 3000 meters). The MUN Explorer uses 11 rechargeable Lithium-ion (Li-ion) batteries as the main power source with a total capacity of 14.6 kWh to 17.952 kWh, and the vehicle can run for 10 hours. The drawbacks of operating the existing power system of the MUN Explorer, which was done by the researcher at the Holyrood management facility, include mobilization costs, logistics and transport, and facility access, all of which should be taken into consideration. Recharging the batteries for at least 8 hours is also very challenging and time consuming. To overcome these challenges and run the MUN Explorer for a long time, it is essential to integrate a fuel cell into an existing power system (i.e., battery bank). The integration of the fuel cell not only will increase the system power, but will also reduce the number of batteries needed as suggested by HOMER software. In this paper, an integrated fuel cell is designed to be added into the MUN Explorer AUV along with a battery bank system to increase its power system. The system sizing is performed using HOMER software. The results from HOMER software show that a 1-kW fuel cell and 8 Li-ion batteries can increase the power system capacity to 68 kWh. The dynamic model is then built in MATLAB/Simulink environment to provide a better understanding of the system behavior. The 1-kW fuel cell is connected to a DC/DC Boost Converter to increase the output voltage from 24 V to 48 V as required by the battery and DC motor. A hydrogen gas tank is also included in the model. The advantage of installing the hydrogen and oxygen tanks beside the batteries is that it helps the buoyancy force in underwater depths. The design of this system is based on MUN Explorer data sheets and system dynamic simulation results.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Mustafa Engin

A sizing procedure is developed for hybrid system with the aid of mathematical models for photovoltaic cell, wind turbine, and battery that are readily present in the literature. This sizing procedure can simulate the annual performance of different kinds of photovoltaic-wind hybrid power system structures for an identified set of renewable resources, which fulfills technical limitations with the lowest energy cost. The output of the program will display the performance of the system during the year, the total cost of the system, and the best size for the PV-generator, wind generator, and battery capacity. Security lightning application is selected, whereas system performance data and environmental operating conditions are measured and stored. This hybrid system, which includes a PV, wind turbine, inverter, and a battery, was installed to supply energy to 24 W lamps, considering that the renewable energy resources of this site where the system was installed were 1700 Wh/m2/day solar radiation and 3.43 m/s yearly average wind speed. Using the measured variables, the inverter and charge regulator efficiencies were calculated as 90% and 98%, respectively, and the overall system’s electrical efficiency is calculated as 72%. Life cycle costs per kWh are found to be $0.89 and LLP = 0.0428.


2020 ◽  
Vol 15 (3) ◽  
pp. 360-367
Author(s):  
Khagendra Bahadur Thapa ◽  
Arbin Maharjan ◽  
Kishor Kaphle ◽  
Kishor Joshi ◽  
Tara Aryal

The adaptation of renewable energy has been increasing in a very encouraging way all over the world. Among various renewable energy resources, wind and solar energy are the promising sources of alternative energy. Wind and solar photovoltaic (PV) have been employed in parallel as a hybrid system for better electricity service. This paper presents a case study and modeling of wind-solar hybrid system in Hriharpur Gadi village, Sindhuli District, Nepal. The hybrid system yields 110kWh of energy per day meeting the village’s electricity demand of 87 kWh per day. Moreover, the hybrid power system with battery storage system is modeled using MATLAB simulator. Further, improvising in the existing modeling has been presented to enhance the efficiency and effectiveness of the system.


2014 ◽  
Vol 703 ◽  
pp. 343-347
Author(s):  
Ya Yun Guan ◽  
Yu Xin Sun ◽  
Kai Shi ◽  
Huang Qiu Zhu ◽  
Xian Xing Liu

In order to realize the solar photovoltaic (PV) system connecting with grid friendly, a PV system with voltage-controlled inverter based on virtual synchronous generator (SG) is presented. This kind of system has features of SG, which supply the virtual moment of inertia to grid. The mathematical model of PV and virtual SG is built, and the control strategy of the maximum power point tracking (MPPT) is also studied in the paper. Simulation model of the grid-connected PV power system is built on Matlab/Simulink. Finally, correctness and feasibility of this system are verified by simulation results.


2012 ◽  
Vol 518-523 ◽  
pp. 3869-3873
Author(s):  
Dong Peng Yue ◽  
Yang Liu

A power system on hybrid electric vehicle (HEV) was chosen for research. On the basis of analysis of characteristic parameters of motor on system, the hybrid system’ dynamics characteristic under electro-mechanical coupling was completely studied. The vibration of hybrid power system was qualitatively studied on theory and experiments when motor were under two different kinds of mode from electricity to push, and two results were consistent with each other well.


Sign in / Sign up

Export Citation Format

Share Document