An Output Capacitor-less Low-dropout Regulator using a Wide-range Single-stage Gain-boosted Error Amplifier and a Frequency-dependent Buffer with a Total Compensation Capacitance of 2.5 pF in 0.5 µm CMOS

Author(s):  
Hyeon-Ji Choi ◽  
Joo-Mi Cho ◽  
Hyo-Jin Park ◽  
Sung-Wan Hong
2011 ◽  
Vol 20 (01) ◽  
pp. 1-13 ◽  
Author(s):  
CHENCHANG ZHAN ◽  
WING-HUNG KI

A CMOS low quiescent current low dropout regulator (LDR) with high power supply rejection (PSR) and without large output capacitor is proposed for system-on-chip (SoC) power management applications. By cascoding a power NMOS with the PMOS pass transistor, high PSR over a wide frequency range is achieved. The gate-drive of the cascode NMOS is controlled by an auxiliary LDR that draws only 1 μA from a small charge pump, thus helping in reducing the quiescent current. Adaptive biasing is employed for the multi-stage error amplifier of the core LDR to achieve high loop gain hence high PSR at low frequency, low quiescent current at light load and high bandwidth at heavy load. A prototype of the proposed high-PSR LDR is fabricated using a standard 0.35 μm CMOS process, occupying an active area of 0.066 mm2. The lowest supply voltage is 1.6 V and the preset output voltage is 1.2 V. The maximum load current is 10 mA. The measured worst-case PSR at full load without using large output capacitor is -22.7 dB up to 60 MHz. The line and load regulations are 0.25 mV/V and 0.32 mV/mA, respectively.


Energies ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 211 ◽  
Author(s):  
Jihoon Park ◽  
Woong-Joon Ko ◽  
Dong-Seok Kang ◽  
Yoonmyung Lee ◽  
Jung-Hoon Chun

An output capacitor-less low-dropout (OCL-LDO) regulator with a wide range of load currents is proposed in this study. The structure of the proposed regulator is based on the flipped-voltage-follower LDO regulator. The feedback loop of the proposed regulator consists of two stages. The second stage is turned on or off depending on the variation in the output load current. Hence, the regulator can retain a phase margin at a wide range of load currents. The proposed regulator exhibits a better regulation performance compared to the ones in previous studies. The test chip is fabricated using a 65-nm CMOS process.


2016 ◽  
Vol 2 (11) ◽  
pp. e1601335 ◽  
Author(s):  
Jorge F. Mejias ◽  
John D. Murray ◽  
Henry Kennedy ◽  
Xiao-Jing Wang

Interactions between top-down and bottom-up processes in the cerebral cortex hold the key to understanding attentional processes, predictive coding, executive control, and a gamut of other brain functions. However, the underlying circuit mechanism remains poorly understood and represents a major challenge in neuroscience. We approached this problem using a large-scale computational model of the primate cortex constrained by new directed and weighted connectivity data. In our model, the interplay between feedforward and feedback signaling depends on the cortical laminar structure and involves complex dynamics across multiple (intralaminar, interlaminar, interareal, and whole cortex) scales. The model was tested by reproducing, as well as providing insights into, a wide range of neurophysiological findings about frequency-dependent interactions between visual cortical areas, including the observation that feedforward pathways are associated with enhanced gamma (30 to 70 Hz) oscillations, whereas feedback projections selectively modulate alpha/low-beta (8 to 15 Hz) oscillations. Furthermore, the model reproduces a functional hierarchy based on frequency-dependent Granger causality analysis of interareal signaling, as reported in recent monkey and human experiments, and suggests a mechanism for the observed context-dependent hierarchy dynamics. Together, this work highlights the necessity of multiscale approaches and provides a modeling platform for studies of large-scale brain circuit dynamics and functions.


2020 ◽  
pp. 1351010X2096615
Author(s):  
Anders Homb ◽  
Simone Conta ◽  
Christoph Geyer ◽  
Niko Kumer

The industrialisation of timber buildings has improved strongly in recent years. When long span is required, timber hollow-box floor elements are increasingly used due to their structural performance. The aim of this paper is to assess the acoustic performance of timber hollow-box floors, determine the governing parameters and identify the corresponding trends. We collected results from laboratory measurements covering both airborne and impact sound insulation from four different laboratories covering a wide range of application. Data include the bare floor constructions and their combination with different floating floors including both lightweight solutions and hybrid solution. We performed the analysis focusing on following parameters: element stiffness, element mass per unit area, dynamic stiffness of the resilient layer, cavity filling and floating floor material. We present the collected data both frequency-dependent and as single number quantities. General trends and features are identified in the frequency-dependent diagrams. A further detailed analysis is based on the single number quantities. It includes a general relationship between element mass per unit area and given requirements for R’W + C50-5000 and L’n,w + CI,50-2500. Furthermore, diagrams are presented illustrating the dependence of impact sound insulation numbers on the cavity filling, the dynamic stiffness of the resilient layer and the type of material used for the floating floor. The additional mass in the cavity improves both airborne and impact sound insulation by minimum 10 dB. This, combined with a floating floor, allows the fulfilment of a wide range of requirements.


Sign in / Sign up

Export Citation Format

Share Document