Sound insulation of timber hollow box floors: Collection of laboratory measurement data and trend analysis

2020 ◽  
pp. 1351010X2096615
Author(s):  
Anders Homb ◽  
Simone Conta ◽  
Christoph Geyer ◽  
Niko Kumer

The industrialisation of timber buildings has improved strongly in recent years. When long span is required, timber hollow-box floor elements are increasingly used due to their structural performance. The aim of this paper is to assess the acoustic performance of timber hollow-box floors, determine the governing parameters and identify the corresponding trends. We collected results from laboratory measurements covering both airborne and impact sound insulation from four different laboratories covering a wide range of application. Data include the bare floor constructions and their combination with different floating floors including both lightweight solutions and hybrid solution. We performed the analysis focusing on following parameters: element stiffness, element mass per unit area, dynamic stiffness of the resilient layer, cavity filling and floating floor material. We present the collected data both frequency-dependent and as single number quantities. General trends and features are identified in the frequency-dependent diagrams. A further detailed analysis is based on the single number quantities. It includes a general relationship between element mass per unit area and given requirements for R’W + C50-5000 and L’n,w + CI,50-2500. Furthermore, diagrams are presented illustrating the dependence of impact sound insulation numbers on the cavity filling, the dynamic stiffness of the resilient layer and the type of material used for the floating floor. The additional mass in the cavity improves both airborne and impact sound insulation by minimum 10 dB. This, combined with a floating floor, allows the fulfilment of a wide range of requirements.

2016 ◽  
Vol 24 (1) ◽  
pp. 35-52 ◽  
Author(s):  
Anders Homb ◽  
Catherine Guigou-Carter ◽  
Andreas Rabold

Wooden building systems, including cross-laminated timber elements, are becoming more common. The last few years have seen new developments and documentation of innovative types of cross-laminated timber floor assemblies. Regarding impact sound associated to walking persons, running or jumping children, such floor assemblies can be regarded as a weak part. So far, there are no reliable standardized calculation models available, for prediction of impact sound in the entire frequency range. Therefore the design is always based upon previous experiences and available measurements. This article presents the results of a number of well controlled sound insulation measurements of cross-laminated timber/massive wood floor constructions conducted in laboratories. The collection of data and results analysis highlight some basic phenomena. For instance, how structural differences related to the grouping of the constructions change the frequency distribution of the impact sound level and the single number quantities. Another significant result is the influence of the dynamic stiffness of the resilient interlayer of floating floor systems and the mass per unit area of the floors. Based on this analysis, the aim is to identify similarities and carry out simplifications. The data will be further processed and used in the development of prediction models and optimization process of cross-laminated timber floor assemblies.


Textiles ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 55-85
Author(s):  
Tufail Hassan ◽  
Hafsa Jamshaid ◽  
Rajesh Mishra ◽  
Muhammad Qamar Khan ◽  
Michal Petru ◽  
...  

Recently, very rapid growth has been observed in the innovations and use of natural-fiber-based materials and composites for acoustic applications due to their environmentally friendly nature, low cost, and good acoustic absorption capability. However, there are still challenges for researchers to improve the mechanical and acoustic properties of natural fiber composites. In contrast, synthetic fiber-based composites have good mechanical properties and can be used in a wide range of structural and automotive applications. This review aims to provide a short overview of the different factors that affect the acoustic properties of natural-fiber-based materials and composites. The various factors that influence acoustic performance are fiber type, fineness, length, orientation, density, volume fraction in the composite, thickness, level of compression, and design. The details of various factors affecting the acoustic behavior of the fiber-based composites are described. Natural-fiber-based composites exhibit relatively good sound absorption capability due to their porous structure. Surface modification by alkali treatment can enhance the sound absorption performance. These materials can be used in buildings and interiors for efficient sound insulation.


2009 ◽  
Vol 16-19 ◽  
pp. 1043-1047
Author(s):  
Sun Wei ◽  
Li Hua Dong ◽  
Yao Hua Dong

In the domain of manufacture and logistics, Radio Frequency Identification (RFID) holds the promise of real-time identifying, locating, tracking and monitoring physical objects without line of sight due to an enhanced efficiency, accuracy, and preciseness of object identification, and can be used for a wide range of pervasive computing applications. To achieve these goals, RFID data has to be collected, filtered, and transformed into semantic application data. However, the amount of RFID data is huge. Therefore, it requires much time to extract valuable information from RFID data for object tracing. This paper specifically explores options for modeling and utilizing RFID data set by XML-encoding for tracking queries and path oriented queries. We then propose a method which translates the queries to SQL queries. Based on the XML-encoding scheme, we devise a storage scheme to process tracking queries and path oriented queries efficiently. Finally, we realize the method by programming in a software system for manufacture and logistics laboratory. The system shows that our approach can process the tracing or path queries efficiently.


2016 ◽  
Vol 2 (11) ◽  
pp. e1601335 ◽  
Author(s):  
Jorge F. Mejias ◽  
John D. Murray ◽  
Henry Kennedy ◽  
Xiao-Jing Wang

Interactions between top-down and bottom-up processes in the cerebral cortex hold the key to understanding attentional processes, predictive coding, executive control, and a gamut of other brain functions. However, the underlying circuit mechanism remains poorly understood and represents a major challenge in neuroscience. We approached this problem using a large-scale computational model of the primate cortex constrained by new directed and weighted connectivity data. In our model, the interplay between feedforward and feedback signaling depends on the cortical laminar structure and involves complex dynamics across multiple (intralaminar, interlaminar, interareal, and whole cortex) scales. The model was tested by reproducing, as well as providing insights into, a wide range of neurophysiological findings about frequency-dependent interactions between visual cortical areas, including the observation that feedforward pathways are associated with enhanced gamma (30 to 70 Hz) oscillations, whereas feedback projections selectively modulate alpha/low-beta (8 to 15 Hz) oscillations. Furthermore, the model reproduces a functional hierarchy based on frequency-dependent Granger causality analysis of interareal signaling, as reported in recent monkey and human experiments, and suggests a mechanism for the observed context-dependent hierarchy dynamics. Together, this work highlights the necessity of multiscale approaches and provides a modeling platform for studies of large-scale brain circuit dynamics and functions.


2016 ◽  
Vol 113 (15) ◽  
pp. 3932-3937 ◽  
Author(s):  
Steven L. Brunton ◽  
Joshua L. Proctor ◽  
J. Nathan Kutz

Extracting governing equations from data is a central challenge in many diverse areas of science and engineering. Data are abundant whereas models often remain elusive, as in climate science, neuroscience, ecology, finance, and epidemiology, to name only a few examples. In this work, we combine sparsity-promoting techniques and machine learning with nonlinear dynamical systems to discover governing equations from noisy measurement data. The only assumption about the structure of the model is that there are only a few important terms that govern the dynamics, so that the equations are sparse in the space of possible functions; this assumption holds for many physical systems in an appropriate basis. In particular, we use sparse regression to determine the fewest terms in the dynamic governing equations required to accurately represent the data. This results in parsimonious models that balance accuracy with model complexity to avoid overfitting. We demonstrate the algorithm on a wide range of problems, from simple canonical systems, including linear and nonlinear oscillators and the chaotic Lorenz system, to the fluid vortex shedding behind an obstacle. The fluid example illustrates the ability of this method to discover the underlying dynamics of a system that took experts in the community nearly 30 years to resolve. We also show that this method generalizes to parameterized systems and systems that are time-varying or have external forcing.


2020 ◽  
Vol 15 (01) ◽  
pp. 17-21
Author(s):  
J. Weinzierl ◽  
W. Wieland

In den Regelwerken zum passiven Schallschutz von Umfassungsbauteilen wird das erforderliche Schalldämm-Maß der Fassade als Einzahlwert entsprechend dem Bewertungsverfahren nach DIN EN ISO 717-1 [1] ermittelt. Um die spektrale Zusammensetzung verschiedener Lärmquellen und die frequenzabhängige Schalldämmung von Fassadenbauteilen zu berücksichtigen, werden in den einschlägigen Regelwerken Korrektursummanden bzw. Spektrum-Anpassungswerte verwendet. Im folgenden Beitrag wird der Einfluss verschiedener Außenlärmspektren und frequenz- abhängiger Schalldämm-Maße auf den Innenpegel diskutiert. Insbesondere werden die Unterschiede zwischen Holz- und Massivbauweise bezüglich des Schutzziels bzw. des Innenpegels betrachtet. Die Untersuchungen zeigen, dass keine generelle Differenzierung zwischen Leicht- und Massivbauweise erforderlich ist. Für hochschalldämmende Leichtbaukonstruktionen mit einem Ctr,50–5000 < –8 dB wird jedoch ein Korrekturterm für das erforderliche Fassaden-Schalldämm-Maß zur Sicherstellung des Schutzziels vorgeschlagen. &nbsp; &nbsp; Summary In the regulations for passive noise protection of surrounding components, the required sound reduction index of the facade is determined as a single value according to the assessment procedure according to DIN EN ISO 717-1 [1]. In order to take into account the spectral composition of different noise sources and the frequency-dependent sound insulation of facade components, correction summands or spectrum adaptation values are used in the relevant regulations. The following article discusses the influence of various outside noise spectra and frequency-dependent sound insulation measures on the inside level. In particular, the differences between wood and solid construction were considered with regard to the protection goal and the internal level. The investigations show that no general differentiation between lightweight and solid construction is necessary. For highly sound-insulating lightweight constructions with a Ctr, 50–5000 <-8 dB, however, a correction term for the required facade soundproofing dimension to ensure the protection goal is proposed. &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;


2021 ◽  
Author(s):  
Ishan Ali Khan

Since their discovery, immense attention has been given to carbon nanotubes (CNTs), due to their exceptional thermal, electronic and mechanical properties and, therefore, the wide range of applications in which they are, or can be potentially, employed. Hence, it is important that all the properties of carbon nanotubes are studied extensively. This thesis studies the vibrational frequencies of double-walled and triple-walled CNTs, with and without an elastic medium surrounding them, by using Finite Element Method (FEM) and Dynamic Stiffness Matrix (DSM) formulations, considering them as Euler-Bernoulli beams coupled with van der Waals interaction forces. For FEM modelling, the linear eigenvalue problem is obtained using Galerkin weighted residual approach. The natural frequencies and mode shapes are derived from eigenvalues and eigenvectors, respectively. For DSM formulation of double-walled CNTs, a nonlinear eigenvalue problem is obtained by enforcing displacement and load end conditions to the exact solution of single equation achieved by combining the coupled governing equations. The natural frequencies are obtained using Wittrick-Williams algorithm. FEM formulation is also applied to both double and triple-walled CNTs modelled as nonlocal Euler-Bernoulli beam. The natural frequencies obtained for all the cases, are in agreement with the values provided in literature.


2021 ◽  
Vol 13 (18) ◽  
pp. 3787
Author(s):  
Carlo Iapige De De Gaetani ◽  
Francesco Ioli ◽  
Livio Pinto

Alpine glaciers are strongly suffering the consequences of the temperature rising and monitoring them over long periods is of particular interest for climate change tracking. A wide range of techniques can be successfully applied to survey and monitor glaciers with different spatial and temporal resolutions. However, going back in time to retrace the evolution of a glacier is still a challenging task. Historical aerial images, e.g., those acquired for regional cartographic purposes, are extremely valuable resources for studying the evolution and movement of a glacier in the past. This work analyzed the evolution of the Belvedere Glacier by means of structure from motion techniques applied to digitalized historical aerial images combined with more recent digital surveys, either from aerial platforms or UAVs. This allowed the monitoring of an Alpine glacier with high resolution and geometrical accuracy over a long span of time, covering the period 1977-2019. In this context, digital surface models of the area at different epochs were computed and jointly analyzed, retrieving the morphological dynamics of the Belvedere Glacier. The integration of datasets dating back to earlier times with those referring to surveys carried out with more modern technologies exploits at its full potential the information that at first glance could be thought obsolete, proving how historical photogrammetric datasets are a remarkable heritage for glaciological studies.


Sign in / Sign up

Export Citation Format

Share Document