Parameter estimation in a dynamic model for rapid thermal processing: theory and experimental results

Author(s):  
S. Belikov ◽  
M. Kaplinsky ◽  
B. Friedland
1989 ◽  
Vol 146 ◽  
Author(s):  
P. Vandenabeele ◽  
K. Maex ◽  
R. De Keersmaecker

ABSTRACTThe influence of patterned oxide layers on temperature non-uniformity during RTP is studied. It is shown that large temperature non-uniformities (up to 80 °C) can occur during RTP as a consequence of large scale patterns of thick oxides. The dependence of oxide thickness and pattern geometry on temperature non-uniformity over a wafer is studied. A set of simulation programs is developed to calculate the optical characteristics of a wafer inside a chamber and to calculate the time dependent temperature non-uniformities on patterned wafers. The calculated results agree very well with the experimental results. The simulation program was used to define the optimal optical conditions for RTP systems for minimal temperature non-uniformity due to patterned overlayers on Si.


1997 ◽  
Vol 470 ◽  
Author(s):  
Yukio Takáno ◽  
Katsunori Kakumoto ◽  
Tomoya Funakoshi

ABSTRACTRTP will be replaced with some of the conventional thermal processing employed in ULSI fabrication lines in near future. We show at first the device characteristics demanded for next generation DRAM which is a typical example of ULSIs and some issues to satisfy the demands. Next we show some candidates for RTP in the ULSI processes and discuss difference between RTP and the conventional thermal processes. We think one of the largest difference is the quenching Si wafers after short time annealing and by the quenching the deep levels due to fast diffusing atoms and point defects in Si are introduced. Experimental results of N2 and Cu related deep levels are shown as the examples of the deep levels induced by the quenching in Si. Finally, we propose the gettering method for them in RTP.


2019 ◽  
Vol 8 (1) ◽  
pp. P35-P40 ◽  
Author(s):  
Haruo Sudo ◽  
Kozo Nakamura ◽  
Susumu Maeda ◽  
Hideyuki Okamura ◽  
Koji Izunome ◽  
...  

1994 ◽  
Vol 141 (11) ◽  
pp. 3200-3209 ◽  
Author(s):  
Charles D. Schaper ◽  
Mehrdad M. Moslehi ◽  
Krishna C. Saraswat ◽  
Thomas Kailath

1990 ◽  
Vol 29 (Part 2, No. 1) ◽  
pp. L137-L140 ◽  
Author(s):  
Hisashi Fukuda ◽  
Akira Uchiyama ◽  
Takahisa Hayashi ◽  
Toshiyuki Iwabuchi ◽  
Seigo Ohno

1987 ◽  
Vol 92 ◽  
Author(s):  
A. Usami ◽  
Y. Tokuda ◽  
H. Shiraki ◽  
H. Ueda ◽  
T. Wada ◽  
...  

ABSTRACTRapid thermal processing using halogen lamps was applied to the diffusion of Zn into GaAs0.6 P0.4:Te from Zn-doped oxide films. The Zn diffusion coefficient of the rapid thermal diffused (RTD) samples at 800°C for 6 s was about two orders of magnitude higher than that of the conventional furnace diffused samples at 800°C for 60 min. The enhanced diffusion of Zn by RTD may be ascribed to the stress field due to the difference in the thermal expansion coefficient between the doped oxide films and GaAs0.6P0.4 materials, and due to the temperature gradient in GaAs0.6P0 4 materials. The Zn diffusion coefficient at Zn concentration of 1.0 × l018 cm−3 was 3.6 × 10−11, 3.1 × 10−11 and 5.0 × 10−12 cm2 /s for the RTD samples at 950°C for 6 s from Zn-, (Zn,Ga)- and (Zn,P)-doped oxide films, respectively. This suggests that Zn diffusibility was controlled by the P in the doped oxide films.


Sign in / Sign up

Export Citation Format

Share Document