Parametric and state estimation by means of high-gain nonlinear observers: application to a bioreactor

Author(s):  
R. Martinez-Guerra ◽  
R. Garrido ◽  
A. Osorio-Miron
Author(s):  
Khaled Laib ◽  
Minh Tu Pham ◽  
Xuefang LIN-SHI ◽  
Redha Meghnous

Abstract This paper presents an averaged state model and the design of nonlinear observers for an on/off pneumatic actuator. The actuator is composed of two chambers and four on/off solenoid valves. The elaborated averaged state model has the advantage of using only one continuous input instead of four binary inputs. Based on this new model, a high gain observer and a sliding mode observer are designed using the piston position and the pressure measurements in one of the chambers. Finally, their closed-loop performances are verified and compared on an experimental benchmark.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-20
Author(s):  
Alfonso Sepulveda-Galvez ◽  
Jesus A. Badillo-Corona ◽  
Isaac Chairez

A set of distributed robust finite-time state observers was developed and tested to estimate the main biochemical substances in interconnected metabolic networks with complex structure. The finite-time estimator was designed by composing several supertwisting based step-by-step state observers. This segmented structure was proposed accordingly to the partition of metabolic network obtained as a result of applying the observability analysis of the model used to represent metabolic networks. The observer was developed under the assumption that a sufficient and small number of intracellular compounds can be obtained by some feasible analytic techniques. These techniques are enlisted to demonstrate the feasibility of designing the proposed observer. A set of numerical simulations was proposed to test the observer design over the hydrogen producing metabolic behavior of Escherichia coli. The numerical evaluations showed the superior performance of the observer (on recovering immeasurable state values) over classical approaches (high gain). The variations of internal metabolites inserted in the hydrogen productive metabolic networks were collected from databases. This information supplied to the observer served to validate its ability to recover the time evolution of nonmeasurable metabolites.


2018 ◽  
Vol 2018 ◽  
pp. 1-21
Author(s):  
Antonio Concha ◽  
Luis Alvarez-Icaza

A parameter identification method and a high gain observer are proposed in order to identify the model and to recover the state of a seismically excited shear building using acceleration responses of the ground and instrumented floors levels, as well as the responses at noninstrumented floors, which are reconstructed by means of cubic spline shape functions. The identification method can be implemented online or offline and uses Linear Integral Filters, whose bandwidth must enclose the spectrum of a seismically excited building. On the other hand, the proposed state observer estimates the displacements and velocities of all the structure floors using the model estimated by the identification method. The observer allows obtaining a fast response and reducing the state estimation error, while depending on a single gain. The performance of the parameter and state estimators is verified through experiments carried out on a five-story small scale building.


1998 ◽  
Vol 31 (17) ◽  
pp. 731-734
Author(s):  
Ercan Solak ◽  
Ömer Morgül

Automatica ◽  
2013 ◽  
Vol 49 (12) ◽  
pp. 3583-3590 ◽  
Author(s):  
AlMuatazbellah M. Boker ◽  
Hassan K. Khalil

Sign in / Sign up

Export Citation Format

Share Document