Average Modeling and Nonlinear Observer Design For Pneumatic Actuators With On/Off Solenoid Valves

Author(s):  
Khaled Laib ◽  
Minh Tu Pham ◽  
Xuefang LIN-SHI ◽  
Redha Meghnous

Abstract This paper presents an averaged state model and the design of nonlinear observers for an on/off pneumatic actuator. The actuator is composed of two chambers and four on/off solenoid valves. The elaborated averaged state model has the advantage of using only one continuous input instead of four binary inputs. Based on this new model, a high gain observer and a sliding mode observer are designed using the piston position and the pressure measurements in one of the chambers. Finally, their closed-loop performances are verified and compared on an experimental benchmark.

Author(s):  
Hannes G. Daepp ◽  
Wayne J. Book

Pneumatic actuators are frequently selected for use in machines intended for human interaction because of their clean operation and natural compliance. However, the compliance, coupled with friction, can also make motion control difficult, leading to the use of more aggressive controllers, such as high-gain PID or sliding mode control, which result in stiff closed-loop system behavior. Model-based options are needed to obtain behavior that provides a better trade-off of compliance and accurate position control. In particular, Model Predictive Control (MPC) is suggested; through the use of constrained optimal control, it offers a framework for minimizing tracking error while enforcing force constraints that ensure low impedance behavior. This paper assesses the suitability of controllers for pneumatic systems to positioning applications in which human-machine interaction is anticipated. MPC is compared against commonly-used alternatives for such scenarios: sliding mode, PID, and impedance control. Results are shown in simulation, and use spectral analysis of the impedance and closed loop tracking to characterize the balance of compliance and accuracy for each of the controllers.


2017 ◽  
Vol 40 (7) ◽  
pp. 2227-2239 ◽  
Author(s):  
Haoping Wang ◽  
Qiankun Qu ◽  
Yang Tian

In this paper, a nonlinear observer based sliding mode control (NOSMC) approach for air-path and a model-based observer for oxygen concentration in the diesel engine equipped with a variable geometry turbocharger and exhaust gas recirculation is introduced. We propose a less conservative observer design technique for Lipschitz nonlinear systems using Ricatti equations. The observer gains are obtained by solving the linear matrix inequality (LMI). Then a robust nonlinear control method, sliding mode control is applied for the states of intake and exhaust manifold pressure and compressor mass flow rate for the sake of the minimization of emissions. The proposed NOSMC controller is applied on a mean value model of turbocharged diesel engine. Besides this, a model-based observer is developed to estimate the oxygen concentration in the intake and exhaust manifolds owing to its significance in reducing emissions of diesel engines. The validation and efficiency of the proposed method are demonstrated by AMESim and Matlab/Simulink co-simulation results.


Robotica ◽  
2010 ◽  
Vol 28 (7) ◽  
pp. 959-973 ◽  
Author(s):  
M. H. Korayem ◽  
R. Haghighi ◽  
A. H. Korayem ◽  
A. Nikoobin ◽  
A. Alamdari

SUMMARYMaximum load carrying capacity (MLCC) of flexible robot manipulators is computed based on closed-loop approach. In open-loop approach, controller is not considered, so the end effector deviation from the predefined path is significant and the accuracy constraint restrains the maximum payload before actuators go into saturation mode. In order to improve the MLCC, a method based on closed-loop strategy is presented. Since in this case the accuracy is improved the actuators constraint is not a major concern and full power of actuators can be used. Since controller can play an important role in improving the maximum payload, a sliding mode based partial feedback linearization controller is designed. Furthermore, a fuzzy variable layer is used in sliding mode design to boost the performance of the controller. However, the control strategy required measurements of elastic variables velocity that are not conveniently measurable. So a nonlinear observer is designed to estimate these variables. Stability analysis of the proposed controller and state observer are performed on the basis of Lyapunov's direct method. In order to verify the effectiveness of the presented method, simulation is done for a two-link flexible manipulator. The obtained maximum payload in open-loop and closed-loop cases is compared and the superiority of the method is illustrated and the results are discussed.


2016 ◽  
Vol 28 (3) ◽  
pp. 304-313 ◽  
Author(s):  
Reesa Akbar ◽  
◽  
Bambang Sumantri ◽  
Hitoshi Katayama ◽  
Shigenori Sano ◽  
...  

[abstFig src='/00280003/05.jpg' width=""230"" text='Quadcopter for repeated control verification' ] The reduced-order observer design we present estimates the velocity states of a quadrotor helicopter, or quadcopter, based on sampled measurements of position and attitude states. This observer is based on the forward-differentiation Euler model. The observer is robust enough against observation noise that the gain of a closed-loop controller is high enough to improve control performance. A sliding-mode controller stabilizes and implements quadcopter tracking control effectively, as is verified experimentally when compared to a conventional backward-difference method.


Author(s):  
Mahnoosh Shajiee ◽  
Seyed Kamal Hosseini Sani ◽  
Mohammad Bagher Naghibi-Sistani ◽  
Saeed Shamaghdari

In this paper, a novel method for the design of robust nonlinear observer in the [Formula: see text] framework for Lipschitz nonlinear systems is proposed. For this purpose, a new dynamical structure is introduced that ensures the stability of observer error dynamics. Design innovation is the use of dynamic gain in the sliding mode observer. The additional degree of freedom provided by this dynamic formulation is exploited to deal with the nonlinear term. The performance of this stable [Formula: see text] observer is better than conventional static gain observers and the dynamic Luenberger observer. The compensator is designed in such a way that, while ensuring the stability of the closed-loop system, it prevents performance loss in the presence of the nonlinearities. By the proposed approach, the observer is robust to nonlinear uncertainties because of increasing the Lipschitz constant. Also, the design procedure in the presence of system and measurement noises is addressed. Finally, the simulation of our methodology is conducted on a nonlinear system to illustrate the advantage of this work in comparison with other observers.


2020 ◽  
Vol 25 (3) ◽  
pp. 44
Author(s):  
Abraham Efraim Rodriguez-Mata ◽  
Yaneth Bustos-Terrones ◽  
Victor Gonzalez-Huitrón ◽  
Pablo Antonio Lopéz-Peréz ◽  
Omar Hernández-González ◽  
...  

The deterioration of current environmental water sources has led to the need to find ways to monitor water quality conditions. In this paper, we propose the use of Streeter–Phelps contaminant distribution models and state estimation techniques (observer) to be able to estimate variables that are very difficult to measure in rivers with online sensors, such as Biochemical Oxygen Demand (BOD). We propose the design of a novel Fractional Order High Gain Observer (FOHO) and consider the use of Lyapunov convergence functions to demonstrate stability, as it is compared to classical extended Luenberger Observer published in the literature, to study the convergence in BOD estimation in rivers. The proposed methodology was used to estimated Dissolved oxygen (DO) and BOD monitoring of River Culiacan, Sinaloa, Mexico. The use of fractional order in high-gain observers has a very effective effect on BOD estimation performance, as shown by our numerical studies. The theoretical results have shown that robust observer design can help solve problems in estimating complex variables.


2021 ◽  
Author(s):  
Ania Adil ◽  
Ibrahima N'Doye ◽  
Abdelghani Hamaz ◽  
Ali Zemouche ◽  
Taous-Meriem Laleg-Kirati

Sensors ◽  
2020 ◽  
Vol 20 (11) ◽  
pp. 3077 ◽  
Author(s):  
Madan Mohan Rayguru ◽  
Mohan Rajesh Elara ◽  
Balakrishnan Ramalingam ◽  
M. A. Viraj J. Muthugala ◽  
S. M. Bhagya P. Samarakoon

This work is inspired by motion control of cleaning robots, operating in certain endogenous environments, and performing various tasks like door cleaning, wall sanitizing, etc. The base platform’s motion for these robots is generally similar to the motion of four-wheel cars. Most of the cleaning and maintenance tasks require detection, path planning, and control. The motion controller’s job is to ensure the robot follows the desired path or a set of points, pre-decided by the path planner. This control loop generally requires some feedback from the on-board sensors, and odometry modules, to compute the necessary velocity inputs for the wheels. As the sensors and odometry modules are prone to environmental noise, dead-reckoning errors, and calibration errors, the control input may not provide satisfactory performance in a closed-loop. This paper develops a robust-observer based sliding mode controller to fulfill the motion control task in the presence of incomplete state measurements and sensor inaccuracies. A robust intrinsic observer design is proposed to estimate the input matrix, which is used for dynamic feedback linearization. The resulting uncertain dynamics are then stabilized through a sliding mode controller. The proposed robust-observer based sliding mode technique assures asymptotic trajectory tracking in the presence of measurement uncertainties. Lyapunov based stability analysis is used to guarantee the convergence of the closed-loop system, and the proposed strategy is successfully validated through numerical simulations.


Sign in / Sign up

Export Citation Format

Share Document