scholarly journals Optimization of Thermoelectric Modules’ Number and Distribution Pattern in an Automotive Exhaust Thermoelectric Generator

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 72143-72157 ◽  
Author(s):  
Xiaolong Li ◽  
Changjun Xie ◽  
Shuhai Quan ◽  
Ying Shi ◽  
Zebo Tang
Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 15
Author(s):  
Lars Heber ◽  
Julian Schwab ◽  
Timo Knobelspies

Emissions from heavy-duty vehicles need to be reduced to decrease their impact on the climate and to meet future regulatory requirements. The use of a cost-optimized thermoelectric generator based on total cost of ownership is proposed for this vehicle class with natural gas engines. A holistic model environment is presented that includes all vehicle interactions. Simultaneous optimization of the heat exchanger and thermoelectric modules is required to enable high system efficiency. A generator design combining high electrical power (peak power of about 3000 W) with low negative effects was selected as a result. Numerical CFD and segmented high-temperature thermoelectric modules are used. For the first time, the possibility of an economical use of the system in the amortization period of significantly less than 2 years is available, with a fuel reduction in a conventional vehicle topology of already up to 2.8%. A significant improvement in technology maturity was achieved, and the power density of the system was significantly improved to 298 W/kg and 568 W/dm3 compared to the state of the art. A functional model successfully validated the simulation results with an average deviation of less than 6%. An electrical output power of up to 2700 W was measured.


Author(s):  
Neha Yedala ◽  
Niket S. Kaisare

Heat recirculating microreactors are being investigated for coupling with thermoelectric generator (TEG) for power generation since they facilitate sustained combustion over a wide range of operating conditions. A major challenge...


2012 ◽  
Vol 430-432 ◽  
pp. 1428-1432
Author(s):  
Rui Quan ◽  
Xin Feng Tang ◽  
Shu Hai Quan ◽  
Ji Guang Wang

The output performance of Automobile Exhaust Thermoelectric Generator (AETEG) is related to the temperature difference and electric connection topology of thermoelectric modules, in order to decrease the ring current among the thermoelectric modules in parallel with different temperature difference and enhance the output performance, a novel heat exchanger using in AETEG is designed in this paper. The interior structure of heat exchanger with fishbone is analysed, then its surface temperature distribution is simulated with ANSYS software and experimented with thermal imaging instrument. Both of the results show that the surface temperature distribution of the fishbone heat exchanger designed in this paper is more uniform in lateral direction and dispalys an obvious gradient in fore-and-aft surface, compared with the one of cavity designed before, the novel heat exchanger has overwhelming advantage in the output performance of AETEG, and the method adopted in this paper is feasible and practical.


2021 ◽  
Vol 239 ◽  
pp. 00005
Author(s):  
Chika Maduabuchi ◽  
Kevwe Ejenakevwe ◽  
Agwu Ndukwe ◽  
Chigbo Mgbemene

This paper presents a computational study of the combined effects of variable geometry and asymmetry in the legs of thermocouples of thermoelectric modules used in solar thermoelectric generators (STEGs). Six different models were considered for the thermocouples in each module, namely: rectangular-rectangular legs, rectangular-trapezoidal legs, rectangular-X legs, trapezoidal-trapezoidal legs, trapezoidal-X legs, and X-X legs. Simulations of the six different modules under the same heat flux was carried out in ANSYS 2020 R2 software. Temperature and voltage distributions were obtained for each model and the results indicate significant variations due to the utilization of varying leg geometries. Results show that the X-X leg module generated the highest temperature gradient and electric voltage. In comparison, a temperature gradient and electric voltage of 297 K and 16 V, respectively were achieved with the X-X leg module as against 182 K and 8.4 V, respectively, achieved in a conventional rectangular leg module. This suggests a 63.2% and 90.5% increase in the temperature gradient and electric voltage of the conventional TE module. Therefore, this study demonstrates that X geometry gives the best performance for thermoelectric modules and STEGs.


Sign in / Sign up

Export Citation Format

Share Document