scholarly journals Stability Evaluation of AC/DC Hybrid Microgrids Considering Bidirectional Power Flow Through the Interlinking Converters

IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 43876-43888
Author(s):  
Abdelsalam A. Eajal ◽  
Harikrishna Muda ◽  
Adedayo Aderibole ◽  
Mohamed Al Hosani ◽  
Hatem Zeineldin ◽  
...  
Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4270
Author(s):  
Gianpiero Colangelo ◽  
Gianluigi Spirto ◽  
Marco Milanese ◽  
Arturo de Risi

In the last years, a change in the power generation paradigm has been promoted by the increasing use of renewable energy sources combined with the need to reduce CO2 emissions. Small and distributed power generators are preferred to the classical centralized and sizeable ones. Accordingly, this fact led to a new way to think and design distributions grids. One of the challenges is to handle bidirectional power flow at the distribution substations transformer from and to the national transportation grid. The aim of this paper is to review and analyze the different mathematical methods to design the architecture of a distribution grid and the state of the art of the technologies used to produce and eventually store or convert, in different energy carriers, electricity produced by renewable energy sources, coping with the aleatory of these sources.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3187
Author(s):  
Keon-Woo Park ◽  
Chul-Hwan Kim

In this study, we describe the development of a plug-in type of switchgear that can control bidirectional power flow. This switchgear system can connect distributed generations such as photovoltaic and wind turbine generation, and AC and DC loads. The proposed switchgear system consists of an inverter for connecting distributed generations and DC load, a static transfer switch (STS) that can control and interrupt the bidirectional power flow, and an intelligent electronic device (IED) that can control each facility using a communication system. Since the topology inside the switchgear is composed of DC bus, it can be operated as a plug-in type of system that can be used by simply connecting the converters of various distributed generations to the inverter in the developed switchgear system. In this study, we describe the overall structure of the proposed switchgear system and the operation of the components. In addition, prototypes of each facility are developed and the results of building a small testbed are presented. Finally, we verify the operation of the inverter by performing an experiment on the testbed and show that throughout a test sequence the proposed switchgear system works normally. The contributions of this study are the development of a plug-in type of switchgear for AC/DC and the actual test results presented through prototype development and testbed configuration.


2012 ◽  
Vol 614-615 ◽  
pp. 1661-1665
Author(s):  
Ling Hui Deng ◽  
Zhi Xin Wang ◽  
Jian Min Duan

The low voltage DC (LVDC) distribution system is a new concept and a promising technology to be used in the future smart distribution system having high level cost-efficiency and reliability. In this paper, a low-voltage (LV) DC microgrid protection system design is proposed. Usually, an LVDC microgrid must be connected to an ac grid through converters with bidirectional power flow and, therefore, a different protection scheme is needed. This paper describes practical protection solutions for the LVDC network and an LVDC system laboratory prototype is being experimentally tested by MATLAB/SIMULINK. The results show that it is possible to use available devices to protect such a system. But other problems may arise which needs further study.


2000 ◽  
Author(s):  
Sriram Chandrasekaran ◽  
Douglas K. Lindner ◽  
Don Leo

Abstract In this paper we study the closed loop power flow characteristics between a controlled piezoelectric actuator and a current controlled drive amplifier for two different structural control laws. We determine the real and reactive power flow through the structure and actuator into the amplifier when the structure is excited with a sinusoidal disturbance force under both control laws. The dependence of the real and reactive components of the power on the material properties of the actuator, structure and the configuration of the controller is presented. These real and reactive power estimates are useful for sizing the drive amplifier for the actuator.


Electronics ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 334 ◽  
Author(s):  
Kiwoo Park ◽  
Kyo-Beum Lee

This paper presents a novel bidirectional double uneven power (BiDUP) based dc-dc converter and its design and control methods. The proposed converter utilizes two dual active bridge (DAB) converters with different power ratings in a special way to realize zero current switching (ZCS), where both turn-on and turn-off switchings occur under the zero-current condition. A design example of the proposed BiDUP converter is presented for medium voltage (MV) and high-power solid-state transformer (SST) systems where both voltage transformation and bidirectional power flow are required. The main features of the proposed converter are to reduce both the switching losses in power semiconductor devices and the filter inductance requirement simultaneously. To verify the feasibility of the proposed converter, a simulation study on the BiDUP converter based SST in a distribution system is presented. Furthermore, to validate the operational principle of the proposed converter, an experimental study using a small-scale prototype is also presented.


Sign in / Sign up

Export Citation Format

Share Document