High gain 4 × 4 slot dipole antenna array in the 5GHz band

Author(s):  
Naoto Iizasa ◽  
R. Pokharel ◽  
Haruichi Kanaya ◽  
Kuniaki Yoshitomi
2018 ◽  
Vol 8 (8) ◽  
pp. 1410 ◽  
Author(s):  
Kwok So ◽  
Kwai Luk ◽  
Chi Chan ◽  
Ka Chan

By employing the complementary dipole antenna concept to the normal waveguide fed slot radiator, an improved antenna element with wide impedance bandwidth and symmetrical radiation patterns is developed. This is achieved by mounting two additional metallic cuboids on the top of the slot radiator, which is equivalent to adding an electric dipole on top of the magnetic dipole due to the slot radiator. Then, a high-gain antenna array was designed based on the improved element and fabricated, using 3D printing technology, with stable frequency characteristics operated at around 28 GHz. This was followed by metallization via electroplating. Analytical results agree well with the experimental results. The measured operating frequency range for the reflection coefficient ≤−15 dB is from 25.7 GHz to 29.8 GHz; its corresponding fractional impedance bandwidth is 14.8%. The measured gain is approximately 32 dBi, with the 3 dB beamwidth around 4°.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Halgurd N. Awl ◽  
Rashad H. Mahmud ◽  
Bakhtiar A. Karim ◽  
Yadgar I. Abdulkarim ◽  
Muharrem Karaaslan ◽  
...  

In this paper, a new design of high gain and wide bandwidth microstrip patch antenna array containing double meander dipole structure is proposed. Two in-phase resonant frequencies in the Ku-band (12–18 GHz) could be achieved in the double meander dipole array structure, which lead to enhance impedance bandwidth without costing extra design section. Besides, further enhanced gain of 2 dBi of the array over the entire operating frequency range has been achieved by introducing a double-layer substrate technique. The proposed antenna has been fabricated using the E33 model LPKF prototyping PCB machine. The measurement results have been performed, and they are in very good agreement with the simulation results. The measured –10 dB impedance bandwidth indicates that the array provides a very wide bandwidth which is around 30% at the center frequency of 15.5 GHz. A stable gain with a peak value of 10 dBi is achieved over the operating frequency range. The E- and H-plane radiation patterns are simulated, and a very low sidelobe level is predicted. The proposed antenna is simple and has relatively low-profile, and it could be a good candidate for millimeter wave communications.


2021 ◽  
Vol 11 (16) ◽  
pp. 7720
Author(s):  
Yanfei Mao ◽  
Shiju E ◽  
Chungeng Zhu

For an RF system, a high-gain antenna helps to improve the equivalent isotropic radiated power (EIRP) of the transmitter and an end-fire antenna array helps to improve the directivity (D) and half power beam width (HP) of the antenna. This work presents a new and simple design method for end-fire antenna array design. The method states that when antenna elements are λ/2 apart, a simple end-fire antenna array could be designed and constructed easily without matching networks between antenna elements. Utilizing Rogers 4350 PCB technology, three 24 GHz high-gain, compact planar two-element end-fire dipole antenna arrays are designed to verify this new design method. The achieved results are three two-element end-fire antennas with gains of 8.8, 9.9 and 9.1 dBi. These antenna arrays are characterized by high gain and simplicity in design. They are also very compact in size, with an area of about 1.9 × 1.7 cm2. The benefit of this work is that a new and simple design for end-fire antenna design is suggested, and three two-element end-fire dipole antenna arrays in planar technology which adopt the design method are presented. A utility model patent was granted for this end-fire dipole array antenna topology, ZL 202022106332.1.


2019 ◽  
Vol 2019 ◽  
pp. 1-16
Author(s):  
Guang Sun ◽  
Yi Liu ◽  
Taolin Liu ◽  
Hu Yang

In this paper, a compact, wideband, and high-efficiency substrate integrated waveguide (SIW) feeding cavity-backed aperture-coupled magneto-electric (ME) dipole antenna element and its array are proposed. Firstly, an SIW cavity-backed and a modified bowtie dipole are designed for the antenna element which makes it possess a high gain and wide impedance bandwidth. The antenna element covers an impedance bandwidth of 66.3% from 10.7 to 21.3 GHz with a peak gain of 10.3 dBi. Secondly, a 4 × 4 array is designed using the proposed antenna element. And a full-corporate substrate integrated waveguide feeding network is introduced to excite the array elements for the antenna application with wide bandwidth and high efficiency. For validation, a prototype of 4 × 4 array is fabricated by standard printed circuit board (PCB) facilities and further measured. The measured −10 dB impedance bandwidth of the proposed 4 × 4 antenna array is 30% (12.75–17.25 GHz) with its gain being 18.2–20.9 dBi within the entire band. The measured maximum aperture efficiency of the antenna array is 94% at 14.92 GHz. Notably, the measured results agree well with simulations, and it shows great advantages over other similar antennas on efficiency and bandwidth.


Sign in / Sign up

Export Citation Format

Share Document