scholarly journals Double Meander Dipole Antenna Array with Enhanced Bandwidth and Gain

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Halgurd N. Awl ◽  
Rashad H. Mahmud ◽  
Bakhtiar A. Karim ◽  
Yadgar I. Abdulkarim ◽  
Muharrem Karaaslan ◽  
...  

In this paper, a new design of high gain and wide bandwidth microstrip patch antenna array containing double meander dipole structure is proposed. Two in-phase resonant frequencies in the Ku-band (12–18 GHz) could be achieved in the double meander dipole array structure, which lead to enhance impedance bandwidth without costing extra design section. Besides, further enhanced gain of 2 dBi of the array over the entire operating frequency range has been achieved by introducing a double-layer substrate technique. The proposed antenna has been fabricated using the E33 model LPKF prototyping PCB machine. The measurement results have been performed, and they are in very good agreement with the simulation results. The measured –10 dB impedance bandwidth indicates that the array provides a very wide bandwidth which is around 30% at the center frequency of 15.5 GHz. A stable gain with a peak value of 10 dBi is achieved over the operating frequency range. The E- and H-plane radiation patterns are simulated, and a very low sidelobe level is predicted. The proposed antenna is simple and has relatively low-profile, and it could be a good candidate for millimeter wave communications.

2018 ◽  
Vol 8 (8) ◽  
pp. 1410 ◽  
Author(s):  
Kwok So ◽  
Kwai Luk ◽  
Chi Chan ◽  
Ka Chan

By employing the complementary dipole antenna concept to the normal waveguide fed slot radiator, an improved antenna element with wide impedance bandwidth and symmetrical radiation patterns is developed. This is achieved by mounting two additional metallic cuboids on the top of the slot radiator, which is equivalent to adding an electric dipole on top of the magnetic dipole due to the slot radiator. Then, a high-gain antenna array was designed based on the improved element and fabricated, using 3D printing technology, with stable frequency characteristics operated at around 28 GHz. This was followed by metallization via electroplating. Analytical results agree well with the experimental results. The measured operating frequency range for the reflection coefficient ≤−15 dB is from 25.7 GHz to 29.8 GHz; its corresponding fractional impedance bandwidth is 14.8%. The measured gain is approximately 32 dBi, with the 3 dB beamwidth around 4°.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Xue-Xia Yang ◽  
Guan-Nan Tan ◽  
Bing Han ◽  
Hai-Gao Xue

A novel millimeter wave coplanar waveguide (CPW) fed Fabry-Perot (F-P) antenna with high gain, broad bandwidth, and low profile is reported. The partially reflective surface (PRS) and the ground form the F-P resonator cavity, which is filled with the same dielectric substrate. A dual rhombic slot loop on the ground acts as the primary feeding antenna, which is fed by the CPW and has broad bandwidth. In order to improve the antenna gain, metal vias are inserted surrounding the F-P cavity. A CPW-to-microstrip transition is designed to measure the performances of the antenna and extend the applications. The measured impedance bandwidth ofS11less than −10 dB is from 34 to 37.7 GHz (10.5%), and the gain is 15.4 dBi at the center frequency of 35 GHz with a 3 dB gain bandwidth of 7.1%. This performance of the antenna shows a tradeoff among gain, bandwidth, and profile.


Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4404 ◽  
Author(s):  
Son Trinh-Van ◽  
Oh Heon Kwon ◽  
Euntae Jung ◽  
Jinwoo Park ◽  
Byunggil Yu ◽  
...  

This paper presents a low-profile log-periodic meandered dipole array (LPMDA) antenna with wideband and high gain characteristics. The antenna consists of 14 dipole elements. For compactness, a meander line structure is applied to each dipole element to reduce its physical length. As a result, a compact and wideband LPMDA antenna is realized, exhibiting a wide impedance bandwidth of 1.04–5.22 GHz (ratio bandwidth of 5.02:1) for | S 11| < −10 dB. To enhance the antenna gain performance while maintaining the wideband behavior, the LPMDA antenna is integrated with a new design of an artificial magnetic conductor (AMC) structure. The designed AMC is realized by combining three AMC structures of different sizes to form a cascaded multi-section AMC structure, of which its overall operating bandwidth can continuously cover the entire impedance bandwidth of the LPMDA antenna. The proposed AMC-backed LPMDA antenna is experimentally verified and its measured −10 dB reflection bandwidth is found to be in the range of 0.84–5.15 GHz (6.13:1). At the main beam direction within the operating frequency bandwidth, the gain of the proposed AMC-backed LPMDA antenna ranges from 7.15–11.43 dBi, which is approximately 4 dBi higher than that of an LPMDA antenna without an AMC. Moreover, the proposed antenna has a low profile of only 0.138 λ L. ( λ L is the free-space wavelength at the lowest operating frequency).


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Guang Sun ◽  
Ge Gao ◽  
Tingting Liu ◽  
Yi Liu ◽  
Hu Yang

In this paper, a wideband slot antenna element and its array with stereoscopic differentially fed structures are proposed for the radar system. Firstly, a series of slots and a stereoscopic differentially fed structure are designed for the antenna element, which makes it possess a wide bandwidth, stable radiation characteristics, and rather high gain. Moreover, the stereoscopic feeding structure can firmly support the antenna’s radiation structure and reduce the influence of feeding connectors on radiating performance. Secondly, a 4 × 4 array is designed using the proposed antenna element. And a hierarchical feeding network is designed for the array on the basis of the stereoscopic differentially fed structure. For validation, the antenna element and 4 × 4 array are both fabricated and measured: (1) the measured −10 dB impedance bandwidth of the antenna element is 62% (6.8–12.9 GHz) and the gain within the entire band is 5–9.7 dBi and (2) the measured −10 dB impedance bandwidth of the array is approximately 50% (7 to 12 GHz) with its gain being 14–19.75 dBi within the entire band. Notably, measured results agree well with simulations and show great advantages over other similar antennas on bandwidth and gain.


Author(s):  
Ashraf Tahat ◽  
Bandar Ersan ◽  
Laith Al-Muhesen ◽  
Zaid Shakhshir ◽  
Talal A.Edwan

This paper presents the design of a compact 2´ x 2 microstrip antenna array of size 11.9 ´15.3 mm2 operating at the mm-Wave of 38 GHz. We achieved a high gain of 14.58 dB, a return loss of -17.7 dB, and a wide impedance bandwidth of 500 MHz. This antenna is duplicated twelve times around an angle of 30° forming a low-profile dodecagon. Each sector can cover a beam of 58° to obtain 12 beams covering the 360 degrees. When compared with implemented antenna designs in the literature that target similar features of com-pact size and low-profile at the desired 5G frequency of 38 GHz, our design had a noticeable reduction in size with an increased gain. Our designed antenna is suited for MIMO beamforming, or switched beam technology applications in mobile wireless systems that include miniaturized base stations or moving network systems, such as mobile hotspots or vehicular networks and related elements .


2019 ◽  
Vol 2019 ◽  
pp. 1-16
Author(s):  
Guang Sun ◽  
Yi Liu ◽  
Taolin Liu ◽  
Hu Yang

In this paper, a compact, wideband, and high-efficiency substrate integrated waveguide (SIW) feeding cavity-backed aperture-coupled magneto-electric (ME) dipole antenna element and its array are proposed. Firstly, an SIW cavity-backed and a modified bowtie dipole are designed for the antenna element which makes it possess a high gain and wide impedance bandwidth. The antenna element covers an impedance bandwidth of 66.3% from 10.7 to 21.3 GHz with a peak gain of 10.3 dBi. Secondly, a 4 × 4 array is designed using the proposed antenna element. And a full-corporate substrate integrated waveguide feeding network is introduced to excite the array elements for the antenna application with wide bandwidth and high efficiency. For validation, a prototype of 4 × 4 array is fabricated by standard printed circuit board (PCB) facilities and further measured. The measured −10 dB impedance bandwidth of the proposed 4 × 4 antenna array is 30% (12.75–17.25 GHz) with its gain being 18.2–20.9 dBi within the entire band. The measured maximum aperture efficiency of the antenna array is 94% at 14.92 GHz. Notably, the measured results agree well with simulations, and it shows great advantages over other similar antennas on efficiency and bandwidth.


Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1358 ◽  
Author(s):  
Bei Huang ◽  
Weifeng Lin ◽  
Jialu Huang ◽  
Jun Zhang ◽  
Gary Zhang ◽  
...  

A low-profile antenna with a high gain and broad bandwidth is proposed for Sub-6GHz communication in this paper. A narrow-band patch mode and a narrow-band dipole mode are shared in one radiator and simultaneously excited to broaden the bandwidth. A compact prototype with a projection size of 0.90 λ0 × 0.78 λ0 and a profile of 0.13 λ0 (λ0 is the wavelength in the free space at the center of the operating frequency) is fabricated and measured. The measurement demonstrates an impedance bandwidth of 67.50%, covering the frequency range from 2.75 GHz to 5.45 GHz and an average gain of 8.4 dBi in the operating band of 3.0–5.0 GHz.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2360
Author(s):  
Amruta Sarvajeet Dixit ◽  
Sumit Kumar ◽  
Shabana Urooj ◽  
Areej Malibari

This paper presents a compact 1 × 4 antipodal Vivaldi antenna (AVA) array for 5G millimeter-wave applications. The designed antenna operates over 24.19 GHz–29.15 GHz and 30.28 GHz–40.47 GHz frequency ranges. The proposed antenna provides a high gain of 8 dBi to 13.2 dBi and the highest gain is obtained at 40.3 GHz. The proposed antenna operates on frequency range-2 (FR2) and covers n257, n258, n260, and n261 frequency bands of 5G communication. The corrugations and RT/Duroid 5880 substrate are used to reduce the antenna size to 24 mm × 28.8 mm × 0.254 mm, which makes the antenna highly compact. Furthermore, the corrugations play an important role in the front-to-back ratio improvement, which further enhances the gain of the antenna. The corporate feeding is optimized meticulously to obtain an enhanced bandwidth and narrow beamwidth. The radiation pattern does not vary over the desired operating frequency range. In addition, the experimental results of the fabricated antenna coincide with the simulated results. The presented antenna design shows a substantial improvement in size, gain, and bandwidth when compared to what has been reported for an AVA with nearly the same size, which makes the proposed antenna one of the best candidates for application in devices that operate in the millimeter frequency range.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 125
Author(s):  
Shaza El-Nady ◽  
Rania R. Elsharkawy ◽  
Asmaa I. Afifi ◽  
Anwer S. Abd El-Hameed

This paper exhibits a high-gain, low-profile dipole antenna array (DAA) for 5G applications. The dipole element has a semi-triangular shape to realize a simple input impedance regime. To reduce the overall antenna size, a substrate integrated cavity (SIC) is adopted as a power splitter feeding network. The transition between the SIC and the antenna element is achieved by a grounded coplanar waveguide (GCPW) to increase the degree of freedom of impedance matching. Epsilon-near-zero (ENZ) metamaterial technique is exploited for gain enhancement. The ENZ metamaterial unit cells of meander shape are placed in front of each dipole perpendicularly to guide the radiated power into the broadside direction. The prospective antenna has an overall size of 2.58 λg3 and operates from 28.5 GHz up to 30.5 GHz. The gain is improved by 5 dB compared to that of the antenna without ENZ unit cells, reaching 11 dBi at the center frequency of 29.5 GHz. Measured and simulated results show a reasonable agreement.


Sign in / Sign up

Export Citation Format

Share Document