Design of 0.14 thz lens integrated on-chip antenna with defected ground structure

Author(s):  
Xiong Xiao ◽  
Dalu Guo ◽  
Haidong Qiao ◽  
Xin Lv ◽  
Weihua Yu
Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Harshavardhan Singh ◽  
Sameen Azhar ◽  
Sanjukta Mandal ◽  
Sujit Kumar Mandal ◽  
Pamidiparthi Ravi Teja Naidu

Abstract In this paper, a circular Sierpinski shaped on-chip fractal antenna with defected ground structure (DGS) is presented for Ku-band applications. The fractal and defected ground structure are employed to achieve higher bandwidth for the entire Ku-band (12–18 GHz). The proposed on-chip antenna (OCA) with a footprint area of 4π mm2 offers wide bandwidth of 7.22 GHz (11.94–19.13 GHz) with the resonating frequency of 15 GHz. At the resonating frequency, the designed antenna shows a peak gain of −19.76 dBi and a radiation efficiency of 55.6%. The co-polarization (CP) and cross-polarization (×P) characteristics of the proposed OCA shows good isolation of 18.05 dBi and 17.44 dBi in the two principal planes with ϕ = 0° and 90° cuts respectively. The measured result of the designed OCA prototype shows a good performance over the desired frequency band.


Electronics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1137
Author(s):  
Changmin Lee ◽  
Jinho Jeong

In this paper, we design a THz CMOS on-chip patch antenna with defected ground structure (DGS) and utilize it to implement a broadband and high gain on-chip antenna array. It is verified from the simulation that the DGS not only can increase the gain and bandwidth of the antenna element, but also can increase the isolation between the antenna elements in the on-chip array. Therefore, it allows the design of the compact 1 × 2 and 2 × 2 on-chip antenna array with high gain and broad bandwidth. The element spacing and feedline structures of the antenna array are designed and optimized by the simulations. The designed antenna element, and 1 × 2 and 2 × 2 antenna arrays are fabricated in a commercial 65 nm CMOS process. In the on-wafer measurement, they exhibit an antenna gain of 3.1 dBi, 7.2 dBi, and 8.2 dBi with a bandwidth of 14.0%, 21.3%, and 28.0% for the reflection coefficient less than −10 dB, respectively, at 300 GHz. This result corresponds to very good performance compared to the reported THz CMOS on-chip antenna array. Therefore, the designed CMOS on-chip antenna element and array using DGS in this work can be effectively applied to build low-cost and high performance THz systems, because they can be fully implemented in a conventional CMOS process without requiring any additional processes or manufacturing techniques.


2017 ◽  
Vol 38 (5) ◽  
pp. 626-629 ◽  
Author(s):  
Yi Zhong ◽  
Yang Yang ◽  
Xi Zhu ◽  
Eryk Dutkiewicz ◽  
Kam Man Shum ◽  
...  

2021 ◽  
pp. 777-782
Author(s):  
P. Loktongbam ◽  
Chaitali Koley ◽  
Debasish Pal ◽  
Ayan Kumar Bandyopadhyay

Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2432 ◽  
Author(s):  
Hyeongjin Kim ◽  
Wonseok Choe ◽  
Jinho Jeong

In this paper, a V-shaped patch antenna with defected ground structure is proposed at terahertz to overcome the limited performance of a standard complementary metal-oxide semiconductor (CMOS) patch antenna consisting of several metal layers and very thin interdielectric layers. The proposed V-shaped patch with slots allows the increased radiation resistance and broadband performance. In addition, the patch resonating at different frequency from the V-shaped patch is stacked on the top to broaden the impedance-matching bandwidth. More importantly, the slots are formed in the ground plane, which is called the defected ground structure, to further increase the radiation resistance and thus improve the bandwidth and efficiency. It is verified from electromagnetic simulations that the leakage waves from the defected ground can enhance the antenna directivity and gain by coherently interfering with the topside radiation. The proposed on-chip antenna is fabricated using a standard 65 nm CMOS process. The on-wafer measurement shows very wide bandwidth in input reflection coefficient (<−10 dB), greater than 28.7% from 240 to >320 GHz. The measured peak gain was as high as 5.48 dBi at 295 GHz. To the best of the authors’ knowledge, these results belong to the best performance among the terahertz CMOS on-chip antennas without using additional components or processes such as dielectric resonators, lens, or substrate thinning.


Sign in / Sign up

Export Citation Format

Share Document