A Genetic Algorithm for Multiple Charging Car Scheduling Problem in Wireless Rechargeable Sensor Networks

Author(s):  
ChengJie Xu ◽  
Tung-Kuang Wu ◽  
Rei-Heng Cheng ◽  
Chang Wu Yu
2006 ◽  
Vol 07 (01) ◽  
pp. 101-115 ◽  
Author(s):  
Ming-Hui Jin ◽  
D. Frank Hsu ◽  
Cheng-Yan Kao

This paper introduces a novel scheduling problem called the active interval scheduling problem in hierarchical wireless sensor networks for long-term periodical monitoring applications. To improve the report sensitivity of the hierarchical wireless sensor networks, an efficient scheduling algorithm is desired. Therefore, in this paper, we propose a compact genetic algorithm (CGA) to optimize the solution quality for sensor network maintenance. The experimental result shows that the proposed CGA brings better solutions in acceptable calculation time.


In large-scale Wireless Rechargeable Sensor Networks (WRSNs), limited battery capacity of nodes may reduce the network longevity. For enhancing the network lifetime, the nodes in the network can recharged periodically based on their operational executions. The rechargeable sensor nodes in the network are replenished using external sources. Using single charging device can be feasible only for small scale WSNs, whereas in managing large scale wireless sensor networks, multiple charging devices are to be modelled for efficiently recharging the sensor nodes, since single devices are having energy constraints to recharge more number of nodes. On focussing those issues, this paper contributes on developing a new model called Load Balanced Constant Scheduling (LBCS) for the replenishment of the sensor nodes. Moreover, multiple Mobile Charging Devices (MCDs) are used here for recharging the sensor nodes effectively, without facing resource limitations. In this model, constant and time based charge scheduling approach and charging route for MCD has been frame optimally. The scheduling mode focuses on a concrete classification procedure for avoiding needless visits of nodes having adequate energy. Providing further improvement in schedule based node replenishment, algorithm for Charging Route Definition (CRD) is also developed in this work. For evidencing the efficiency of the proposed model, the work is simulated and evaluated. The simulation results are compared with some existing models based on the network lifetime, time taken for recharge and efficiency.


Energies ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 287 ◽  
Author(s):  
Rei-Heng Cheng ◽  
ChengJie Xu ◽  
Tung-Kuang Wu

Wireless rechargeable sensor networks (WRSNs) have gained much attention in recent years due to the rapid progress that has occurred in wireless charging technology. The charging is usually done by one or multiple mobile vehicle(s) equipped with wireless chargers moving toward sensors demanding energy replenishing. Since the loading of each sensor in a WRSN can be different, their time to energy exhaustion may also be varied. Under some circumstances, sensors may deplete their energy quickly and need to be charged urgently. Appropriate scheduling of available mobile charger(s) so that all sensors in need of recharge can be served in time is thus essential to ensure sustainable operation of the entire network, which unfortunately has been proven to be an NP-hard problem (Non-deterministic Polynomial-time hard). Two essential criteria that need to be considered concurrently in such a problem are time (the sensor’s deadline for recharge) and distance (from charger to the sensor demands recharge). Previous works use a static combination of these two parameters in determining charging order, which may fail to meet all the sensors’ charging requirements in a dynamically changing network. Genetic algorithms, which have long been considered a powerful tool for solving the scheduling problems, have also been proposed to address the charging route scheduling issue. However, previous genetic-based approaches considered only one charging vehicle scenario that may be more suitable for a smaller WRSN. With the availability of multiple mobile chargers, not only may more areas be covered, but also the network lifetime can be sustained for longer. However, efficiently allocating charging tasks to multiple charging vehicles would be an even more complex problem. In this work, a genetic approach, which includes novel designs in chromosome structure, selection, cross-over and mutation operations, supporting multiple charging vehicles is proposed. Two unique features are incorporated into the proposed algorithm to improve its scheduling effectiveness and performance, which include (1) inclusion of EDF (Earliest Deadline First) and NJF (Nearest Job First) scheduling outcomes into the initial chromosomes, and (2) clustering neighboring sensors demand recharge and then assigning sensors in a group to the same mobile charger. By including EDF and NJF scheduling outcomes into the first genetic population, we guarantee both time and distance factors are taken into account, and the weightings of the two would be decided dynamically through the genetic process to reflect various network traffic conditions. In addition, with the extra clustering step, the movement of each charger may be confined to a more local area, which effectively reduces the travelling distance, and thus the energy consumption, of the chargers in a multiple-charger environment. Extensive simulations and results show that the proposed algorithm indeed derives feasible charge scheduling for multiple chargers to keep the sensors/network in operation, and at the same time minimize the overall moving distance of the mobile chargers.


Author(s):  
Amandeep Kaur Sohal ◽  
Ajay Kumar Sharma ◽  
Neetu Sood

Background: An information gathering is a typical and important task in agriculture monitoring and military surveillance. In these applications, minimization of energy consumption and maximization of network lifetime have prime importance for green computing. As wireless sensor networks comprise of a large number of sensors with limited battery power and deployed at remote geographical locations for monitoring physical events, therefore it is imperative to have minimum consumption of energy during network coverage. The WSNs help in accurate monitoring of remote environment by collecting data intelligently from the individual sensors. Objective: The paper is motivated from green computing aspect of wireless sensor network and an Energy-efficient Weight-based Coverage Enhancing protocol using Genetic Algorithm (WCEGA) is presented. The WCEGA is designed to achieve continuously monitoring of remote areas for a longer time with least power consumption. Method: The cluster-based algorithm consists two phases: cluster formation and data transmission. In cluster formation, selection of cluster heads and cluster members areas based on energy and coverage efficient parameters. The governing parameters are residual energy, overlapping degree, node density and neighbor’s degree. The data transmission between CHs and sink is based on well-known evolution search algorithm i.e. Genetic Algorithm. Conclusion: The results of WCEGA are compared with other established protocols and shows significant improvement of full coverage and lifetime approximately 40% and 45% respectively.


Sign in / Sign up

Export Citation Format

Share Document