An Open-circuit Fault Detection and Location Strategy for MMC with Feature Extraction and Random Forest

Author(s):  
Wenshuo Xing ◽  
Rui Xie ◽  
Heya Yang ◽  
Xiaofei Chang ◽  
Jing Sheng ◽  
...  
2019 ◽  
Vol 9 (15) ◽  
pp. 2990 ◽  
Author(s):  
Krishna Mohan Mishra ◽  
Kalevi Huhtala

In this paper, we propose a new algorithm for data extraction from time-series data, and furthermore automatic calculation of highly informative deep features to be used in fault detection. In data extraction, elevator start and stop events are extracted from sensor data including both acceleration and magnetic signals. In addition, a generic deep autoencoder model is also developed for automated feature extraction from the extracted profiles. After this, extracted deep features are classified with random forest algorithm for fault detection. Sensor data are labelled as healthy and faulty based on the maintenance actions recorded. The remaining healthy data are used for validation of the model to prove its efficacy in terms of avoiding false positives. We have achieved above 90% accuracy in fault detection along with avoiding false positives based on new extracted deep features, which outperforms results using existing features. Existing features are also classified with random forest to compare results. Our developed algorithm provides better results due to the new deep features extracted from the dataset when compared to existing features. This research will help various predictive maintenance systems to detect false alarms, which will in turn reduce unnecessary visits of service technicians to installation sites.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Shiyuan Liu ◽  
Xu Qian ◽  
Hong Wan ◽  
Zongbin Ye ◽  
Shoupeng Wu ◽  
...  

Fault detection can increase the reliability and efficiency of power electronic converters employed in power systems. Among the converters in the power system, a Neutral Point Clamped (NPC) three-level inverter is most commonly used to drive electric motors. In this paper, a new approach for open-circuit fault detection and location of the NPC three-level inverter for a shifting process using a constant voltage-to-frequency ratio is proposed. In order to diagnose open-circuit fault in as short a time as possible, an adaptive electrical period partition (AEPP) algorithm is proposed to pick single electrical periods from real-time three-phase current signals. The Maximal Overlap Discrete Wavelet Transformation (MODWT) and Park’s Vector Modulus (PVM) are used for feature analysis and normalization of electrical period signals. The statistical characteristics of the electrical period signals are extracted, and a random forest model is constructed to realize the state classification. Compared with the traditional fault diagnosis method, the proposed algorithm finds fault locations quickly and accurately. The effectiveness and accuracy of the proposed algorithm are verified by experiments.


Author(s):  
Iyappan Murugesan ◽  
Karpagam Sathish

: This paper presents electrical power system comprises many complex and interrelating elements that are susceptible to the disturbance or electrical fault. The faults in electrical power system transmission line (TL) are detected and classified. But, the existing techniques like artificial neural network (ANN) failed to improve the Fault Detection (FD) performance during transmission and distribution. In order to reduce the power loss rate (PLR), Daubechies Wavelet Transform based Gradient Ascent Deep Neural Learning (DWT-GADNL) Technique is introduced for FDin electrical power sub-station. DWT-GADNL Technique comprises three step, normalization, feature extraction and FD through optimization. Initially sample power TL signal is taken. After that in first step, min-max normalization process is carried out to estimate the various rated values of transmission lines. Then in second step, Daubechies Wavelet Transform (DWT) is employed for decomposition of normalized TLsignal to different components for feature extraction with higher accuracy. Finally in third step, Gradient Ascent Deep Neural Learning is an optimization process for detecting the local maximum (i.e., fault) from the extracted values with help of error function and weight value. When maximum error with low weight value is identified, the fault is detected with lesser time consumption. DWT-GADNL Technique is measured with PLR, feature extraction accuracy (FEA), and fault detection time (FDT). The simulation result shows that DWT-GADNL Technique is able to improve the performance of FEA and reduces FDT and PLR during the transmission and distribution when compared to state-of-the-art works.


2019 ◽  
Vol 13 (2) ◽  
pp. 136-141 ◽  
Author(s):  
Abhisek Sethy ◽  
Prashanta Kumar Patra ◽  
Deepak Ranjan Nayak

Background: In the past decades, handwritten character recognition has received considerable attention from researchers across the globe because of its wide range of applications in daily life. From the literature, it has been observed that there is limited study on various handwritten Indian scripts and Odia is one of them. We revised some of the patents relating to handwritten character recognition. Methods: This paper deals with the development of an automatic recognition system for offline handwritten Odia character recognition. In this case, prior to feature extraction from images, preprocessing has been done on the character images. For feature extraction, first the gray level co-occurrence matrix (GLCM) is computed from all the sub-bands of two-dimensional discrete wavelet transform (2D DWT) and thereafter, feature descriptors such as energy, entropy, correlation, homogeneity, and contrast are calculated from GLCMs which are termed as the primary feature vector. In order to further reduce the feature space and generate more relevant features, principal component analysis (PCA) has been employed. Because of the several salient features of random forest (RF) and K- nearest neighbor (K-NN), they have become a significant choice in pattern classification tasks and therefore, both RF and K-NN are separately applied in this study for segregation of character images. Results: All the experiments were performed on a system having specification as windows 8, 64-bit operating system, and Intel (R) i7 – 4770 CPU @ 3.40 GHz. Simulations were conducted through Matlab2014a on a standard database named as NIT Rourkela Odia Database. Conclusion: The proposed system has been validated on a standard database. The simulation results based on 10-fold cross-validation scenario demonstrate that the proposed system earns better accuracy than the existing methods while requiring least number of features. The recognition rate using RF and K-NN classifier is found to be 94.6% and 96.4% respectively.


Author(s):  
Farrikh Alzami ◽  
Erika Devi Udayanti ◽  
Dwi Puji Prabowo ◽  
Rama Aria Megantara

Sentiment analysis in terms of polarity classification is very important in everyday life, with the existence of polarity, many people can find out whether the respected document has positive or negative sentiment so that it can help in choosing and making decisions. Sentiment analysis usually done manually. Therefore, an automatic sentiment analysis classification process is needed. However, it is rare to find studies that discuss extraction features and which learning models are suitable for unstructured sentiment analysis types with the Amazon food review case. This research explores some extraction features such as Word Bags, TF-IDF, Word2Vector, as well as a combination of TF-IDF and Word2Vector with several machine learning models such as Random Forest, SVM, KNN and Naïve Bayes to find out a combination of feature extraction and learning models that can help add variety to the analysis of polarity sentiments. By assisting with document preparation such as html tags and punctuation and special characters, using snowball stemming, TF-IDF results obtained with SVM are suitable for obtaining a polarity classification in unstructured sentiment analysis for the case of Amazon food review with a performance result of 87,3 percent.


2020 ◽  
Vol 20 (S12) ◽  
Author(s):  
Juan C. Mier ◽  
Yejin Kim ◽  
Xiaoqian Jiang ◽  
Guo-Qiang Zhang ◽  
Samden Lhatoo

Abstract Background Sudden Unexpected Death in Epilepsy (SUDEP) has increased in awareness considerably over the last two decades and is acknowledged as a serious problem in epilepsy. However, the scientific community remains unclear on the reason or possible bio markers that can discern potentially fatal seizures from other non-fatal seizures. The duration of postictal generalized EEG suppression (PGES) is a promising candidate to aid in identifying SUDEP risk. The length of time a patient experiences PGES after a seizure may be used to infer the risk a patient may have of SUDEP later in life. However, the problem becomes identifying the duration, or marking the end, of PGES (Tomson et al. in Lancet Neurol 7(11):1021–1031, 2008; Nashef in Epilepsia 38:6–8, 1997). Methods This work addresses the problem of marking the end to PGES in EEG data, extracted from patients during a clinically supervised seizure. This work proposes a sensitivity analysis on EEG window size/delay, feature extraction and classifiers along with associated hyperparameters. The resulting sensitivity analysis includes the Gradient Boosted Decision Trees and Random Forest classifiers trained on 10 extracted features rooted in fundamental EEG behavior using an EEG specific feature extraction process (pyEEG) and 5 different window sizes or delays (Bao et al. in Comput Intell Neurosci 2011:1687–5265, 2011). Results The machine learning architecture described above scored a maximum AUC score of 76.02% with the Random Forest classifier trained on all extracted features. The highest performing features included SVD Entropy, Petrosan Fractal Dimension and Power Spectral Intensity. Conclusion The methods described are effective in automatically marking the end to PGES. Future work should include integration of these methods into the clinical setting and using the results to be able to predict a patient’s SUDEP risk.


2021 ◽  
pp. 1-1
Author(s):  
Jun Jiang ◽  
Wei Li ◽  
Zhe Wen ◽  
Yifan Bie ◽  
Harald Schwarz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document