Absorbing and Conductive Properties of Thin Fullerene and Aluminum Films

Author(s):  
Mazinov Alim Seit-Ametovich ◽  
Tyutyunik Andrey Sergeevich ◽  
Gurchenko Vladimir Sergeevich ◽  
Fitaev Ibraim Shevchetovich ◽  
Vasilchenko Vladislav Maksimovich
Author(s):  
Ray Wu ◽  
G. Ruben ◽  
B. Siegel ◽  
P. Spielman ◽  
E. Jay

A method for determining long nucleotide sequences of double-stranded DNA is being developed. It involves (a) the synchronous digestion of the DNA from the 3' ends with EL coli exonuclease III (Exo III) followed by (b) resynthesis with labeled nucleotides and DNA polymerase. A crucial factor in the success of this method is the degree to which the enzyme digestion proceeds synchronously under proper conditions of incubation (step a). Dark field EM is used to obtain accurate measurements on the lengths and distribution of the DNA molecules before and after digestion with Exo III, while gel electrophoresis is used in parallel to obtain a mean length for these molecules. It is the measurements on a large enough sample of individual molecules by EM that provides the information on how synchronously the digestion proceeds. For length measurements, the DNA molecules were picked up on 20-30 Å thick carbon-aluminum films, using the aqueous Kleinschmidt technique and stained with 7.5 x 10-5M uranyl acetate in 90% ethanol for 3 minutes.


2020 ◽  
Vol 04 ◽  
Author(s):  
A. Guillermo Bracamonte

: Graphene as Organic material showed special attention due to their electronic and conductive properties. Moreover, its highly conjugated chemical structures and relative easy modification permitted varied design and control of targeted properties and applications. In addition, this Nanomaterial accompanied with pseudo Electromagnetic fields permitted photonics, electronics and Quantum interactions with their surrounding that generated new materials properties. In this context, this short Review, intends to discuss many of these studies related with new materials based on graphene for light and electronic interactions, conductions, and new modes of non-classical light generation. It should be highlighted that these new materials and metamaterials are currently in progress. For this reason it was showed and discussed some representative examples from Fundamental Research with Potential Applications as well as for their incorporations to real Advanced devices and miniaturized instrumentation. In this way, it was proposed this Special issue entitled “Design and synthesis of Hybrids Graphene based Metamaterials”, in order to open and share the knowledge of the Current State of the Art in this Multidisciplinary field.


1991 ◽  
Vol 225 ◽  
Author(s):  
D. B. Knorr ◽  
K. P. Rodbell ◽  
D. P. Tracy

ABSTRACTPure aluminum films are deposited under a variety of conditions to vary the crystallographic texture. After patterning and annealing at 400°C for 1 hour, electromigration tests are performed at several temperatures. Failure data are compared on the basis of t50 and standard deviation. Microstructure is quantified by transmission electron microscopy for grain size and grain size distribution and by X-ray diffraction for texture. A strong (111) texture significantly improves the electromigration lifetime and decreases the standard deviation in time to failure. This improvement correlates with both the fraction and sharpness of the (111) texture component.


1984 ◽  
Vol 35 ◽  
Author(s):  
S. Williamson ◽  
G. Mourou ◽  
J.C.M. Li

ABSTRACTThe technique of picosecond electron diffraction is used to time resolve the laser-induced melting of thin aluminum films. It is observed that under rapid heating conditions, the long range order of the lattice subsists for lattice temperatures well above the equilibrium point, indicative of superheating. This superheating can be verified by directly measuring the lattice temperature. The collapse time of the long range order is measured and found to vary from 20 ps to several nanoseconds according to the degree of superheating. Two interpretations of the delayed melting are offered, based on the conventional nucleation and point defect theories. While the nucleation theory provides an initial nucleus size and concentration for melting to occur, the point defect theory offers a possible explanation for how the nuclei are originally formed.


Polymer ◽  
2021 ◽  
pp. 123641
Author(s):  
Nicholas C. Bontrager ◽  
Samantha Radomski ◽  
Samantha P. Daymon ◽  
R. Daniel Johnson ◽  
Kevin M. Miller

2020 ◽  
Vol 2 (4) ◽  
Author(s):  
Aviv Glezer Moshe ◽  
Eli Farber ◽  
Guy Deutscher

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mayukh Nath ◽  
Shovan Maity ◽  
Shitij Avlani ◽  
Scott Weigand ◽  
Shreyas Sen

AbstractRadiative communication using electromagnetic fields is the backbone of today’s wirelessly connected world, which implies that the physical signals are available for malicious interceptors to snoop within a 5–10 m distance, also increasing interference and reducing channel capacity. Recently, Electro-quasistatic Human Body Communication (EQS-HBC) was demonstrated which utilizes the human body’s conductive properties to communicate without radiating the signals outside the body. Previous experiments showed that an attack with an antenna was unsuccessful at a distance more than 1 cm from the body surface and 15 cm from an EQS-HBC device. However, since this is a new communication modality, it calls for an investigation of new attack modalities—that can potentially exploit the physics utilized in EQS-HBC to break the system. In this study, we present a novel attack method for EQS-HBC devices, using the body of the attacker itself as a coupling surface and capacitive inter-body coupling between the user and the attacker. We develop theoretical understanding backed by experimental results for inter-body coupling, as a function of distance between the subjects. We utilize this newly developed understanding to design EQS-HBC transmitters that minimizes the attack distance through inter-body coupling, as well as the interference among multiple EQS-HBC users due to inter-body coupling. This understanding will allow us to develop more secure and robust EQS-HBC based body area networks in the future.


Sign in / Sign up

Export Citation Format

Share Document