A New Approach for Designing of PID Controller for a Linear Brushless DC Motor with Using Ant Colony Search Algorithm

Author(s):  
N. Navidi ◽  
M. Bavafa ◽  
S. Hesami
Author(s):  
Mohd Syakir Adli ◽  
Noor Hazrin Hany Mohamad Hanif ◽  
Siti Fauziah Toha Tohara

<p>This paper presents a control scheme for speed control system in brushless dc (BLDC) motor to be utilized for electric motorbike. While conventional motorbikes require engine and fuel, electric motorbikes require DC motor and battery pack in order to be powered up. The limitation with battery pack is that it will need to be recharged after a certain period and distance. As the recharging process is time consuming, a PID controller is designed to maintain the speed of the motor at its optimum state, thus ensuring a longer lasting battery time (until the next charge). The controller is designed to track variations of speed references and stabilizes the output speed accordingly. The simulation results conducted in MATLAB/SIMULINK® shows that the motor, equipped with the PID controller was able to track the reference speed in 7.8x10<sup>-2</sup> milliseconds with no overshoot.  The result shows optimistic possibility that the proposed controller can be used to maintain the speed of the motor at its optimum speed.</p>


2013 ◽  
Vol 432 ◽  
pp. 472-477
Author(s):  
Wei Fan ◽  
Tao Chen

This paper presents a robust fuzzy proportional-integral-derivative (PID) controller for brushless DC motor (BLDCM) control system. The hardware circuit of the BLDCM control system is designed and implemented using a digital signal processor (DSP) TMS320LF2407A and a monolithic BLDCM controller MC33035 as the core. Furthermore, a fuzzy PID controller, which combines the advantages of good robustness of fuzzy controller and high precision of conventional PID controller, is employed in the hardware system, thereby yielding a digital, intelligent BLDCM control system. Experimental results have shown that the control system can run steadily and control accurately, and have convincingly demonstrated the usefulness of the proposed fuzzy PID controller in BLDCM control system.


2012 ◽  
Vol 33 ◽  
pp. 1533-1539 ◽  
Author(s):  
Wang Yuanxi ◽  
Yu Yali ◽  
Zhang Guosheng ◽  
Sheng Xiaoliang

2012 ◽  
Vol 246-247 ◽  
pp. 838-841
Author(s):  
Gong She Shi ◽  
Lei Huang ◽  
Wei Hu

The brushless DC motor (BLDCM) non-linear and the complexity of the working conditions are likely to cause the conventional PID servo control performance is not satisfactory. In order to improve the performance of the BLDCM servo control system and PID parameter tuning efficiency, this paper designs an adaptive fuzzy PID controller. Fuzzy logic PID controller parameters Kp, Ki, Kd are adjusted online real time to achieve the effect of optimal control, the BLDCM speed is as to the control object, and in the Matlab of Simulink toolbox simulation is used to achieve speed closed loop of BLDCM. According to comparative analysis of the conventional PID and adaptive fuzzy PID of Dynamic response curve, adaptive Fuzzy PID quick start for brushless DC motors, anti-disturbance has better control effect.


Electronics ◽  
2021 ◽  
Vol 10 (18) ◽  
pp. 2299
Author(s):  
Łukasz Knypiński ◽  
Sebastian Kuroczycki ◽  
Fausto Pedro García Márquez

This paper presents the application of the cuckoo search (CS) algorithm in attempts to the minimization of the commutation torque ripple in the brushless DC motor (BLDC). The optimization algorithm was created based on the cuckoo’s reproductive behavior. The lumped-parameters mathematical model of the BLDC motor was developed. The values of self-inductances, mutual inductances, and back-electromotive force waveforms applied in the mathematical model were calculated by the use of the finite element method. The optimization algorithm was developed in Python 3.8. The CS algorithm was coupled with the static penalty function. During the optimization process, the shape of the voltage supplying the stator windings was determined to minimize the commutation torque ripple. Selected results of computer simulation are presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document