Integrated Modeling and Simulating of the Three-axis Turbine Power Generation based on the Neural Network Identification

Author(s):  
Xiaoyun Zhang ◽  
Shuying Li ◽  
Jianqing Wang ◽  
Huanran Fan
2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Yingjie Liu ◽  
Dawei Cui

In order to solve the problem of road roughness identification, a study on the nonlinear autoregressive with exogenous inputs (NARX) neural network identification method was carried out in the paper. Firstly, a 7-DOF plane model of vehicle vibration system was established to obtain the vertical acceleration and elevation acceleration of the body, which were set as ideal input samples for the neural network. Then, based on the plane model, with common speed, the road roughness was solved as the ideal output sample of the NARX neural network, and the road roughness of B-level and C-level was identified. The results show that the proposed method has ideal identification accuracy and strong antinoise ability. The relative error of C-level road roughness is larger than that of B-level road roughness. The identified road roughness can provide a theoretical basis for analyzing the dynamic response of expressway roads.


2013 ◽  
Vol 846-847 ◽  
pp. 268-273
Author(s):  
Rong Bo Shi ◽  
Zhi Ping Guo ◽  
Zhi Yong Song

This paper analyzes CNC machine tools machining error sources, put forward a kind of on-line monitoring technology of CNC machine tools machining accuracy based on online neural network. Through the establishment of CNC machine tools condition monitoring platform, collection sensor signal of the key components of CNC machine tools, using time domain and frequency domain method of the original signal processing, extract the characteristic related to machining accuracy change, input to the neural network, identification the changes of machining accuracy. The experimental results show that, the on-line monitoring technology based on neural network, can identify the changes of machining accuracy.


Author(s):  
Aymen Chaouachi ◽  
◽  
Rashad M. Kamel ◽  
Ken Nagasaka

This paper presents the applicability of artificial neural networks for 24 hour ahead solar power generation forecasting of a 20 kW photovoltaic system, the developed forecasting is suitable for a reliable Microgrid energy management. In total four neural networks were proposed, namely: multi-layred perceptron, radial basis function, recurrent and a neural network ensemble consisting in ensemble of bagged networks. Forecasting reliability of the proposed neural networks was carried out in terms forecasting error performance basing on statistical and graphical methods. The experimental results showed that all the proposed networks achieved an acceptable forecasting accuracy. In term of comparison the neural network ensemble gives the highest precision forecasting comparing to the conventional networks. In fact, each network of the ensemble over-fits to some extent and leads to a diversity which enhances the noise tolerance and the forecasting generalization performance comparing to the conventional networks.


Author(s):  
T. G. Manjunath ◽  
Ashok Kusagur

<p>Meta Heuristic methods have made a deep impact in the area of optimization in different streams of engineering. The performance of these algorithms is of importance because the hardware implementation of these algorithms is to be carried out for different engineering applications. As an important application in High Voltage DC (HVDC) transmission and Industrial Drives the multilevel inverter fault diagnosis is carried out using the different meta-heuristic methods with Neural Network as the decision making algorithm. The optimization of the weight and the bias values in the neural network diagnosis system is carried out in order to analyze the performance by means of comparing the Mean Square Error (MSE) while the Neural Network is getting trained for different fault conditions in the multilevel inverter. Matlab based implementation is carried out and the results are tabulated and inferred for a Multilevel Inverter fed from the Photovoltaic power generation system. In order to increase the robustness of the fault detection, with renewable energy based power generation system as the source for the Multilevel Inverter, the feature extracted from the multilevel inverter are positive, negative and zero sequence voltage along with the THD of the output voltage. The optimization algorithm used is Particle Swarm Optimization (PSO), Cuckoo Search Algorithm(CSA), Genetic Algorithm(GA) and Tabu Search Algorithm (TSA).</p>


2021 ◽  
Vol 7 (1) ◽  
pp. 87-113
Author(s):  
Athanasios Lazaropoulos

Broadband over Power Lines (BPL) networks that are deployed across the smart grid can benefit from the usage of machine learning, as smarter grid diagnostics are collected and analyzed. In this paper, the neural network identification methodology of Overhead Low-Voltage (OV LV) BPL networks that aims at identifying the number of branches for a given OV LV BPL topology channel attenuation behavior is proposed, which is simply denoted as NNIM-BNI. In order to identify the branch number of an OV LV BPL topology through its channel attenuation behavior, NNIM-BNI exploits the Deterministic Hybrid Model (DHM), which has been extensively tested in OV LV BPL networks for their channel attenuation determination, and the OV LV BPL topology database of Topology Identification Methodology (TIM). The results of NNIM-BNI towards the branch number identification of OV LV BPL topologies are compared against the ones of a newly proposed TIM-based methodology, denoted as TIM-BNI.


1994 ◽  
Vol 33 (01) ◽  
pp. 157-160 ◽  
Author(s):  
S. Kruse-Andersen ◽  
J. Kolberg ◽  
E. Jakobsen

Abstract:Continuous recording of intraluminal pressures for extended periods of time is currently regarded as a valuable method for detection of esophageal motor abnormalities. A subsequent automatic analysis of the resulting motility data relies on strict mathematical criteria for recognition of pressure events. Due to great variation in events, this method often fails to detect biologically relevant pressure variations. We have tried to develop a new concept for recognition of pressure events based on a neural network. Pressures were recorded for over 23 hours in 29 normal volunteers by means of a portable data recording system. A number of pressure events and non-events were selected from 9 recordings and used for training the network. The performance of the trained network was then verified on recordings from the remaining 20 volunteers. The accuracy and sensitivity of the two systems were comparable. However, the neural network recognized pressure peaks clearly generated by muscular activity that had escaped detection by the conventional program. In conclusion, we believe that neu-rocomputing has potential advantages for automatic analysis of gastrointestinal motility data.


1997 ◽  
Vol 36 (04/05) ◽  
pp. 349-351
Author(s):  
H. Mizuta ◽  
K. Kawachi ◽  
H. Yoshida ◽  
K. Iida ◽  
Y. Okubo ◽  
...  

Abstract:This paper compares two classifiers: Pseudo Bayesian and Neural Network for assisting in making diagnoses of psychiatric patients based on a simple yes/no questionnaire which is provided at the outpatient’s first visit to the hospital. The classifiers categorize patients into three most commonly seen ICD classes, i.e. schizophrenic, emotional and neurotic disorders. One hundred completed questionnaires were utilized for constructing and evaluating the classifiers. Average correct decision rates were 73.3% for the Pseudo Bayesian Classifier and 77.3% for the Neural Network classifier. These rates were higher than the rate which an experienced psychiatrist achieved based on the same restricted data as the classifiers utilized. These classifiers may be effectively utilized for assisting psychiatrists in making their final diagnoses.


2020 ◽  
Vol 2020 (10) ◽  
pp. 54-62
Author(s):  
Oleksii VASYLIEV ◽  

The problem of applying neural networks to calculate ratings used in banking in the decision-making process on granting or not granting loans to borrowers is considered. The task is to determine the rating function of the borrower based on a set of statistical data on the effectiveness of loans provided by the bank. When constructing a regression model to calculate the rating function, it is necessary to know its general form. If so, the task is to calculate the parameters that are included in the expression for the rating function. In contrast to this approach, in the case of using neural networks, there is no need to specify the general form for the rating function. Instead, certain neural network architecture is chosen and parameters are calculated for it on the basis of statistical data. Importantly, the same neural network architecture can be used to process different sets of statistical data. The disadvantages of using neural networks include the need to calculate a large number of parameters. There is also no universal algorithm that would determine the optimal neural network architecture. As an example of the use of neural networks to determine the borrower's rating, a model system is considered, in which the borrower's rating is determined by a known non-analytical rating function. A neural network with two inner layers, which contain, respectively, three and two neurons and have a sigmoid activation function, is used for modeling. It is shown that the use of the neural network allows restoring the borrower's rating function with quite acceptable accuracy.


Sign in / Sign up

Export Citation Format

Share Document