A novel management mobility framework for point to point radio communication in wireless network

Author(s):  
Ciprian-Leonard Pitu ◽  
Carmen-Melinda Blendea ◽  
Radu Campeanu
2012 ◽  
Vol 263-266 ◽  
pp. 1190-1193
Author(s):  
Guang Zhong Chen ◽  
Bing Zhang ◽  
Yue Yang

In order to solve tower cranes interference and collision problems in the construction site, wireless communication mode among tower cranes is analyzed. Comparing of different network mode for the ratio station, rotating point-to-multipoint wireless network mode is put forward. Wireless token ring network solutions are put forward for half-duplex radio communication. Token-ring network communication protocols are draw up and workflow of wireless network is analyzed in detail. Distributed control algorithm for the group tower cranes anti-collision is put forward based on wireless communication algorithm


2021 ◽  
Vol 17 (4) ◽  
Author(s):  
Siti Aisyah ◽  
Ahmad Fauzy Daulay ◽  
Heru Wijanarko ◽  
Daniel Sutopo Pamungkas ◽  
Kamarudin Kamarudin

Object mapping based on location tracking methods has been widely used in various types of applications.     Most tracking systems recently use existing technology and infrastructure such as satellite, cellular and wireless (RF) technology. These existing technologies are high-cost technology that needs authorized permission to be integrated to the novel technology. This research proposed a cheap point to point device technology to track a location of a transceiver using GPS in a portable infrastructure using Line of sight radio communication. The tracking system design is connected to the IoT system in order to be more accessible. The proposed system using GPS as an identifier of the transceiver coordinate location and 433MHz radio module as media communication between transmitter and receiver. The use of a 433MHz radio frequency module which is free-license adds value to the system so that it will be easily accessed. The design of portable and internet-based devices also gives a positive value in which the system does not have to depend on existing infrastructure and the system can also be reached even if it is placed in remote areas. The system test results show that the system can be well accessed up to a distance of 6.8 km.


Author(s):  
S. V. Kruglikov ◽  
A. Yu. Zalizka

A technique of synthesis of a wireless digital communication network with package switching, providing transfer of video messages of real time scale between elements of multipurpose information-operating system in conditions of high failure rate of central elements, is considered. As conceptual model of a telecommunication network – the network of the mixed structure, including multipurpose devices, constructed on the basis of standards of a broadband radio access with switching of packages and two interconnected levels of network interaction of elements (local and main) is accepted. The technique of synthesis of a wireless network is based on the multilevel, combined adaptation of a telecommunication network in the conditions of refusals of central elements, which primary goal is rational change of parameters, functions of network elements in close interrelation with purposeful transformation of structure of telecommunication system subnetworks. The main objective of carrying out the combined adaptation of the network consists in achievement of necessary throughput of communication system depending on degree of failure rate of central elements. Properties of multilevel adaptation were investigated in the course of realization of the combined (structurally-parametrical) synthesis with use of the aggregate approach of modelling of difficult technical systems. Efficiency of the specified technique is proven by the results of the imitating experiment with use of the aggregate model of a wireless network of data transmission with switching of packages, obtained previously. The experimental data, received at natural research of networks of a broadband radio communication on the basis of standards 802.11 b/g/n, have shown, that time of processing of packages of a message essentially depends on use of existing ways of adaptation. In particular, application of effective algorithms of adaptation (both parametrical and structural) will allow to reduce the time of finding of details (packages) in broadband communication devices by several times and, thereby, to provide demanded throughput of the network functioning in the conditions of refusals of central elements.


Author(s):  
D. Cherns

The use of high resolution electron microscopy (HREM) to determine the atomic structure of grain boundaries and interfaces is a topic of great current interest. Grain boundary structure has been considered for many years as central to an understanding of the mechanical and transport properties of materials. Some more recent attention has focussed on the atomic structures of metalsemiconductor interfaces which are believed to control electrical properties of contacts. The atomic structures of interfaces in semiconductor or metal multilayers is an area of growing interest for understanding the unusual electrical or mechanical properties which these new materials possess. However, although the point-to-point resolutions of currently available HREMs, ∼2-3Å, appear sufficient to solve many of these problems, few atomic models of grain boundaries and interfaces have been derived. Moreover, with a new generation of 300-400kV instruments promising resolutions in the 1.6-2.0 Å range, and resolutions better than 1.5Å expected from specialist instruments, it is an appropriate time to consider the usefulness of HREM for interface studies.


Author(s):  
D. A. Carpenter ◽  
M. A. Taylor

The development of intense sources of x rays has led to renewed interest in the use of microbeams of x rays in x-ray fluorescence analysis. Sparks pointed out that the use of x rays as a probe offered the advantages of high sensitivity, low detection limits, low beam damage, and large penetration depths with minimal specimen preparation or perturbation. In addition, the option of air operation provided special advantages for examination of hydrated systems or for nondestructive microanalysis of large specimens.The disadvantages of synchrotron sources prompted the development of laboratory-based instrumentation with various schemes to maximize the beam flux while maintaining small point-to-point resolution. Nichols and Ryon developed a microprobe using a rotating anode source and a modified microdiffractometer. Cross and Wherry showed that by close-coupling the x-ray source, specimen, and detector, good intensities could be obtained for beam sizes between 30 and 100μm. More importantly, both groups combined specimen scanning with modern imaging techniques for rapid element mapping.


Sign in / Sign up

Export Citation Format

Share Document