Analysis of driving torque generated by superconducting motor based on the Meissner effect

Author(s):  
Chun Yan Cui ◽  
Lan Kai Li ◽  
Xin Ning Hu ◽  
Hui Wang ◽  
Qiu Liang Wang ◽  
...  
2001 ◽  
Vol 35 (6) ◽  
pp. 659 ◽  
Author(s):  
A. V. Prikhod’ko
Keyword(s):  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Francesco Gabriele ◽  
Mattia Udina ◽  
Lara Benfatto

AbstractThe hallmark of superconductivity is the rigidity of the quantum-mechanical phase of electrons, responsible for superfluid behavior and Meissner effect. The strength of the phase stiffness is set by the Josephson coupling, which is strongly anisotropic in layered cuprates. So far, THz light pulses have been used to achieve non-linear control of the out-of-plane Josephson plasma mode, whose frequency lies in the THz range. However, the high-energy in-plane plasma mode has been considered insensitive to THz pumping. Here, we show that THz driving of both low-frequency and high-frequency plasma waves is possible via a general two-plasmon excitation mechanism. The anisotropy of the Josephson couplings leads to markedly different thermal effects for the out-of-plane and in-plane response, linking in both cases the emergence of non-linear photonics across Tc to the superfluid stiffness. Our results show that THz light pulses represent a preferential knob to selectively drive phase excitations in unconventional superconductors.


2020 ◽  
Vol 10 (1) ◽  
pp. 175-182 ◽  
Author(s):  
Grzegorz Koralewski

AbstractThe work presents a simulation model of a “driver–automation–autonomous vehicles–road” system which is the basis for synthesis of automatic gear shift control system. The mathematical description makes use of physical quantities which characterise driving torque transformation from the combustion engine to the car driven wheels. The basic components of the model are algorithms for the driver’s action logic in controlling motion velocity, logic of gear shift control functioning regarding direction and moment of switching, for determining right-hand side of differential equations and for motion quality indicators. The model is realised in a form of an application software package, comprising sub-programmes for input data, for computerised motion simulation of cars with mechanical and hydro-mechanical – automatically controlled – transmission systems and for models of characteristic car routes.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 640
Author(s):  
Vladimir Dzhunushaliev ◽  
Vladimir Folomeev ◽  
Abylaikhan Tlemisov

In this work, we study cylindrically symmetric solutions within SU(3) non-Abelian Proca theory coupled to a Higgs scalar field. The solutions describe tubes containing either the flux of a color electric field or the energy flux and momentum. It is shown that the existence of such tubes depends crucially on the presence of the Higgs field (there are no such solutions without this field). We examine the dependence of the integral characteristics (linear energy and momentum densities) on the values of the electromagnetic potentials at the center of the tube, as well as on the values of the coupling constant of the Higgs scalar field. The solutions obtained are topologically trivial and demonstrate the dual Meissner effect: the electric field is pushed out by the Higgs scalar field.


Sign in / Sign up

Export Citation Format

Share Document