Effects of Magnetic Field on Surface Flashover Behavior of Epoxy Resin for High-Field Magnets

Author(s):  
M. Y. Wang ◽  
B. X. Du ◽  
Jin Li ◽  
Z. L. Li ◽  
M. Xiao ◽  
...  
Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2013
Author(s):  
Zhong Wu ◽  
Jingyun Chen ◽  
Qifeng Li ◽  
Da-Hai Xia ◽  
Yida Deng ◽  
...  

By modifying the bonding of graphene (GR) and Fe3O4, a stable structure of GR-Fe3O4, namely magnetic GR, was obtained. Under the induction of a magnetic field, it can be orientated in an epoxy resin (EP) matrix, thus preparing EP/GR-Fe3O4 composites. The effects of the content of GR and the degree of orientation on the thermal conductivity of the composites were investigated, and the most suitable Fe3O4 load on GR was obtained. When the mass ratio of GR and Fe3O4 was 2:1, the thermal conductivity could be increased by 54.8% compared with that of pure EP. Meanwhile, EP/GR-Fe3O4 composites had a better thermal stability, dynamic thermomechanical properties, and excellent electrical insulation properties, which can meet the requirements of electronic packaging materials.


2002 ◽  
Vol 16 (20n22) ◽  
pp. 3101-3104
Author(s):  
L. BALICAS ◽  
J. S. BROOKS ◽  
K. STORR ◽  
S. UJI ◽  
M. TOKUMOTO ◽  
...  

We investigate by electrical transport the field-induced superconducting state (FISC) in the organic conductor λ- (BETS) 2 FeCl 4. Below 4 K, antiferromagnetic-insulator, metallic, and eventually superconducting (FISC) ground states are observed with increasing in-plane magnetic field. The FISC state survives between 18 and 41 T, and can be interpreted in terms of the Jaccarino-Peter effect, where the external magnetic field compensates the exchange field of aligned Fe 3+ ions. We further argue that the Fe 3+ moments are essential to stabilize the resulting singlet, two-dimensional superconducting state. Here we provide experimental evidence indicating that this state, as well as the insulating antiferromagnetic ground state, is extremely sensitive to hydrostatic pressure.


2006 ◽  
Vol 75 (2) ◽  
pp. 024710 ◽  
Author(s):  
Y. H. Matsuda ◽  
T. Inami ◽  
K. Ohwada ◽  
Y. Murata ◽  
H. Nojiri ◽  
...  

Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Robert W Biederman ◽  
Loretta Gevenosky ◽  
Geetha Rayarao ◽  
RONALD WILLIAMS ◽  
Richard Lombardi ◽  
...  

Introduction: The evolution of pacemaker/ICD safety in the magnetic field has triggered considerable interest in more clinical routine use. However, many limitations to widespread adoption of this seemingly implausible idea just a few years ago remain: unresolved impact of the high magnetic field, RF amplitude and oscillatory forces on electronics with possible high field damage to capacitor, solenoid and microcircuitry. However, given recent vender refinements over the last 10 years, we hypothesized that the impact on such circuitry may be far less than expected. Method: Consecutive interrogation of 940 pts who underwent clinically indicated MRI were evaluated over 5 years. This cohort was comprised of neuro/neurosurgical (72%), orthopedic (11%) and cardiac (17%) cases. Routine interrogation was performed within 10 min of entry into the bore of a dedicated Cardiac MRI (GE, 1.5T, WI). As well, reinterrogation was performed within 10 min of departure MRI (average 21±12min). At the time of interrogation pre and post MRI, a separate, repeat interrogation was performed within 5 min of each other such that 2 sets of PM/ICD parameters were obtained pre and post MRI. Result: No complications to either pt or device occurred during the MRI comprising 564 PMs and 376 ICDs. A cardiologist was present guiding the interrogation, configuration, and reconfiguration of the PM/ICD as well was present for entire MRI. There were no significant differences in common clinical parameters. More importantly, there was no difference in any parameter when compared in any order pre to post MRI scan. See Table. Conclusion: Intrinsic variability and inherent changes triggered by MRI environments are clinically insignificant and statistically negligible thereby removing yet another of the last remaining fears and apprehensions for primary PM/ICD failure and destruction as we move towards a more uniform acceptance of this technology for clinically meaningful use, dissemination and acceptance.


2010 ◽  
Vol 22 (10) ◽  
pp. 2501-2504 ◽  
Author(s):  
刘瑜 Liu Yu ◽  
邓建军 Deng Jianjun ◽  
王勐 Wang Meng ◽  
邹文康 Zou Wenkang ◽  
周良骥 Zhou Liangji

2020 ◽  
Vol 51 (11) ◽  
pp. 1433-1449
Author(s):  
G. Annino ◽  
H. Moons ◽  
M. Fittipaldi ◽  
S. Van Doorslaer ◽  
E. Goovaerts

AbstractThis study compares the performance of two coil configurations for W-band pulsed ENDOR using a setup with both a radiofrequency ‘hairpin’ coil internal to a microwave non-radiative resonator and Helmholtz-like coils external to the resonator. Evaluation of the different coil performances is achieved via the ENDOR study of two model systems. The efficiencies of the coil configurations are first investigated numerically, showing that a higher radiofrequency current-to-magnetic field conversion factor can be achieved with the intra-cavity coil, with a similar radiofrequency magnetic field uniformity. This result is then confirmed by the broadband ENDOR spectra acquired with the two coil arrangements. A gain in the signal-to-noise ratio enabled by the internal coil of about a factor 10 was observed. In some cases, the high conversion factor of the intra-cavity coil led to a saturation of the ENDOR transitions. The possibility to implement a similar intra-cavity radiofrequency coil configuration in higher field spectrometers is finally discussed.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Sheng Ran ◽  
Shanta R. Saha ◽  
I-Lin Liu ◽  
David Graf ◽  
Johnpierre Paglione ◽  
...  

AbstractMagnetic field-induced superconductivity is a fascinating quantum phenomenon, whose origin is yet to be fully understood. The recently discovered spin-triplet superconductor, UTe2, exhibits two such superconducting phases, with the second one reentering in the magnetic field of 45 T and persisting up to 65 T. More surprisingly, in order to induce this superconducting phase, the magnetic field has to be applied in a special angle range, not along any high symmetry crystalline direction. Here we investigated the evolution of this high-field-induced superconducting phase under pressure. Two superconducting phases merge together under pressure, and the zero resistance persists up to 45 T, the field limit of the current study. We also reveal that the high-field-induced superconducting phase is completely decoupled from the first-order field-polarized phase transition, different from the previously known example of field-induced superconductivity in URhGe, indicating superconductivity boosted by a different paring mechanism.


Sign in / Sign up

Export Citation Format

Share Document