Modeling and control of an epitaxial silicon deposition process with step disturbances

Author(s):  
E. Sachs ◽  
A. Hu ◽  
A. Ingolfsson ◽  
P.H. Langer
Author(s):  
Patrick M. Sammons ◽  
Douglas A. Bristow ◽  
Robert G. Landers

Additive Manufacturing (AM) is a growing class of manufacturing processes where parts are fabricated by repeated addition of material. Many of these processes show great promise for the production of complex, functional parts for use in critical applications. One such process, Laser Metal Deposition (LMD), uses a laser and a coaxial blown metal powder source to produce functional metal parts. However, it has been demonstrated that the LMD process possesses complex two-dimensional dynamics which, when not appropriately accounted for in the modeling and control stages, can lead to build failures. Additionally, even when the two-dimensionality of the process is accounted for, modeling and process uncertainties can lead to degraded performance or instability. Here, in the context of a control oriented model of the LMD process developed previously, process and modeling uncertainties are modeled and quantified in the frequency domain.


2009 ◽  
Vol 129 (4) ◽  
pp. 363-367
Author(s):  
Tomoyuki Maeda ◽  
Makishi Nakayama ◽  
Hiroshi Narazaki ◽  
Akira Kitamura

Sign in / Sign up

Export Citation Format

Share Document