Comparison of isotropic dry etching process using XeF2 and ANisotropic Wet Etching Process using EDP for microhotplate device

Author(s):  
Z. Tardan ◽  
Z. Abdul Halim
2015 ◽  
Vol 645-646 ◽  
pp. 163-168
Author(s):  
Rui Lei ◽  
Wei Guo Liu ◽  
Chang Long Cai ◽  
Shun Zhou ◽  
Jing Nie ◽  
...  

Polyimide is often used as a sacrificial layer material to make floating structure. Polyimide is also divided into photosensitive and non-photosensitive type; photosensitive polyimide currently has more negative photoresist and poor performance in many ways. Compared with photosensitive polyimide, the non-photosensitive type has low stress, stable performance and other advantages, so non-photosensitive polyimide has been chosen as a sacrificial layer material. To achieve the graphical function and release sacrificial layer, A deeply research was made in this dissertation makes on wet etching and dry etching. By controlling the wet etching process of prebake condition, exposure and developing time, and oxygen dry etching process of etching power, bias voltage and other key process parameters, a good sacrificial layer graph and etching effect have been got. Finally, it can be concluded that when the prebake conditions for 105°C, 8min and times of exposure and developing were 11s and 29s, the non-photosensitive polyimide wet etching effect is the best; when the etching power is 1000w, an oxygen flux rate is 50sccm, the reaction pressure is 30mTorr, the bias voltage is 140v, oxygen dry etching has a good effect.


2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Chenlu Wang ◽  
Xuegang Li ◽  
Huikai Xu ◽  
Zhiyuan Li ◽  
Junhua Wang ◽  
...  

AbstractHere we report a breakthrough in the fabrication of a long lifetime transmon qubit. We use tantalum films as the base superconductor. By using a dry etching process, we obtained transmon qubits with a best T1 lifetime of 503 μs. As a comparison, we also fabricated transmon qubits with other popular materials, including niobium and aluminum, under the same design and fabrication processes. After characterizing their coherence properties, we found that qubits prepared with tantalum films have the best performance. Since the dry etching process is stable and highly anisotropic, it is much more suitable for fabricating complex scalable quantum circuits, when compared to wet etching. As a result, the current breakthrough indicates that the dry etching process of tantalum film is a promising approach to fabricate medium- or large-scale superconducting quantum circuits with a much longer lifetime, meeting the requirements for building practical quantum computers.


1992 ◽  
Vol 28 (3) ◽  
pp. 338
Author(s):  
A.S. Gozdz ◽  
J.A. Shelburne ◽  
R.S. Robinson ◽  
C.C. Chang
Keyword(s):  

2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Jin Soo Park ◽  
Dong-Hyun Kang ◽  
Seung Min Kwak ◽  
Tae Song Kim ◽  
Jung Ho Park ◽  
...  

2000 ◽  
Vol 87 (9) ◽  
pp. 6860-6862 ◽  
Author(s):  
Satoru Yoshimura ◽  
D. D. Djayaprawira ◽  
Tham Kim Kong ◽  
Yusuke Masuda ◽  
Hiroki Shoji ◽  
...  

2011 ◽  
Vol 364 ◽  
pp. 232-237 ◽  
Author(s):  
S.Y. Lim ◽  
M.M. Norani

Catalyst plays a crucial role in determining the characteristics of carbon nanotubes (CNTs) produced by using thermal catalytic chemical vapor deposition (CVD). It is essential to investigate how the catalyst preparation affects the characteristics of CNTs because certain application demands specific size for optimum performance. This study reports the effect of the types of catalyst and the duration of the catalyst pre-treatment (wet etching time, dry etching time and ball milling) on the diameter of CNTs. The synthesized CNTs samples were characterized by scanning and transmission electron microscopy and Raman spectroscopy. Wet etching (2M hydrofluoric acid) time was varied from 1 to 2.5 hrs and the diameter range was found to be in the range of 23 to 52 nm. The diameter range for CNTs produced for 3 hrs and 5 hrs of dry etching treatment (with ammonia gas) are 38 to 51 nm and 23 to 48 nm, respectively. The diameter size of CNTs produced using Ni (14 to 25 nm) was found to be smaller than Fe (38 to 51 nm). There is a significant decrease in the diameter of CNTs by prolonging the wet etching period. Shorter and curly shaped CNTs can also be obtained by using Ni as the catalyst. Keywords: chemical vapor deposition, carbon nanotubes, catalyst pretreatment


2010 ◽  
Vol 518 (8) ◽  
pp. 2147-2151
Author(s):  
Abderrafia Moujoud ◽  
Sungho Kang ◽  
Hyun Jae Kim ◽  
Mark Andrews

Author(s):  
Martin Ehrhardt ◽  
Pierre Lorenz ◽  
Jens Bauer ◽  
Robert Heinke ◽  
Mohammad Afaque Hossain ◽  
...  

AbstractHigh-quality, ultra-precise processing of surfaces is of high importance for high-tech industry and requires a good depth control of processing, a low roughness of the machined surface and as little as possible surface and subsurface damage but cannot be realized by laser ablation processes. Contrary, electron/ion beam, plasma processes and dry etching are utilized in microelectronics, optics and photonics. Here, we have demonstrated a laser-induced plasma (LIP) etching of single crystalline germanium by an optically pumped reactive plasma, resulting in high quality etching. A Ti:Sapphire laser (λ = 775 nm, EPulse/max. = 1 mJ, t = 150 fs, frep. = 1 kHz) has been used, after focusing with a 60 mm lens, for igniting a temporary plasma in a CF4/O2 gas at near atmospheric pressure. Typical etching rate of approximately ~ 100 nm / min and a surface roughness of less than 11 nm rms were found. The etching results were studied in dependence on laser pulse energy, etching time, and plasma – surface distance. The mechanism of the etching process is expected to be of chemical nature by the formation of volatile products from the chemical reaction of laser plasma activated species with the germanium surface. This proposed laser etching process can provide new processing capabilities of materials for ultra—high precision laser machining of semiconducting materials as can applied for infrared optics machining.


2002 ◽  
Vol 722 ◽  
Author(s):  
Maria Losurdo ◽  
MariaMichela Giangregorio ◽  
Pio Capezzuto ◽  
Giovanni Bruno ◽  
Gon Namkoong ◽  
...  

AbstractThe use of dry hydrogen plasma etching is evaluated for determination of GaN polarity and critically compared to wet etching in NaOH. It is shown that hydrogen plasma etching is effective in revealing inversion domains (IDs) and some types of dislocations. This is because the surface morphology is unchanged by the hydrogen treatment, and, hence, the surface reactivity is not masked.


Sign in / Sign up

Export Citation Format

Share Document