A 6.8 TOPS/W Energy Efficiency, 1.5µW Power Consumption, Pulse Width Modulation Neuromorphic Circuits for Near-Data Computing with SSD

Author(s):  
Kota Tsurumi ◽  
Kenta Suzuki ◽  
Ken Takeuchi
Author(s):  
Hussain Attia ◽  
Amjad Omar ◽  
Maen Takruri ◽  
Halah Y. Ali

<p>The high power consumption of conventional street lighting systems, and the consequences on environmental ecosystem due to continuous turning ON of light, have led researchers to seek solutions to this problem. LED light dimming system has been presented in many studies using computerized systems with or without wireless monitoring facility. The demerits of these systems include complexity, high cost and unfixed data transfer speed. This paper proposes to reduce power consumption of street lighting through a decentralized light dimming system that is based on Pulse Width Modulation (PWM). This is in addition to replacing conventional high power lamps with lower power LED lamps. The dimming control circuit of this system is fixed on each pole and controlled individually resulting in faster and more reliable response. The proposed system uses the available infrastructure and is suitable for small or main streets regardless of the number of light poles. It is also flexible in its coverage distance due to the freedom of motion detector selection. The advantages of using LED lighting on the environment as compared to conventional lighting are explained. Simulations reveal the effectiveness of the proposed system on energy saving and on the environment.</p>


2020 ◽  
Vol 17 (4) ◽  
pp. 1666-1670
Author(s):  
S. Aravind Suraj ◽  
P. Ashwin Kumar Thachat ◽  
Sayam ◽  
Visnu Dharsini

Conventional highway lights use power consuming sodium vapor lamps. Replacing Sodium vapor lamps with LEDs reduce power consumption by up to 50%. Dimming the lights when not required can further reduce power consumption. The proposed system aims at reducing power consumption by analyzing the presence of vehicles using an ultrasonic sensor and dynamically adjusting the intensity of the highway lights through Pulse Width Modulation. The proposed module aims at reducing energy consumption without compromising on the safety of the public. It operates on a renewable energy source making it even more energy efficient.


2019 ◽  
Vol 28 (12) ◽  
pp. 1950201 ◽  
Author(s):  
P. Michael Preetam Raj ◽  
Arvind Subramaniam ◽  
Shashank Priya ◽  
Souri Banerjee ◽  
Souvik Kundu

Memristor resembles an artificial synapse and is considered to be basic electronic element for realizing neuromorphic circuits. In this work, a systematic investigation was conducted on memristor-based resistance-programming circuits to write analog data into a memristor utilizing pulse width modulation techniques. The high-frequency sinusoidal signal was utilized to read the data in the form of its electronic resistance. An optimum circuit configuration demonstrated multilevel stable resistive states, which are analogous to the connection weights in the human synapse. In order to modulate these memristive weights for representing the learning activities in human brain synapse, it was identified that the pulse width modulation technique is superior as compared to spike-timing-dependent plasticity. Further, the above analysis was utilized in training the memristor to update its resistive weights in consonance with its learning, analogous to that in a neural network. Further, the memristive crossbar architecture was utilized to implement a real-time application in Econometrics, where an array of memristors were utilized to learn and update the purchase trends of an [Formula: see text] matrix of customers. The proposed circuits possess the advantages of high packing density, low power consumption and nonvolatility, and also pave the way for developing future neuromorphic circuits.


Author(s):  
Y. Dubravin ◽  
V. Tkachenko ◽  
O. Spivak

The study of the energy characteristics of the active traction converter with pulse-width modulation as part of the traction electric drive of an AC electric locomotive was held during the research. Active traction converter provides pulse-width control of the collector DC traction motors voltage and belongs to the basic AC / DC circuit. The transient process when switching transistor switches is accompanied by significant voltage surge, due to the scattering inductance reaction of the traction transformer. Studies have shown that the diode discharge buffer circuits do not provide discharge of the electromagnetic energy accumulated in the winding of the transformer. An active traction converter control algorithm has been developed, which implies the use of pulse-width and phase regulation of rectified voltage. Switching of transistor switches occurs in the presence of a parallel current circuit. This creates the conditions for the discharge of electromagnetic energy accumulated in the secondary winding circuit of the traction transformer. The developed mathematical model allows to investigate the electromagnetic processes that occur during the switching of transistor switches and to evaluate the energy efficiency of the electric locomotive with active traction converter. In the simulation process, the influence of active traction converter parameters and control algorithms on the power rate of the converter, the total THD distortion rate of current and voltage and the relative values of the rectified voltage were investigated. Measures to increase the power rate and to reduce the emission level of higher current harmonics into the traction network were proposed.


2020 ◽  
Vol 1 (1) ◽  
pp. 44-74
Author(s):  
Blake Troise

The 1-bit sonic environment (perhaps most famously musically employed on the ZX Spectrum) is defined by extreme limitation. Yet, belying these restrictions, there is a surprisingly expressive instrumental versatility. This article explores the theory behind the primary, idiosyncratically 1-bit techniques available to the composer-programmer, those that are essential when designing “instruments” in 1-bit environments. These techniques include pulse width modulation for timbral manipulation and means of generating virtual polyphony in software, such as the pin pulse and pulse interleaving techniques. These methodologies are considered in respect to their compositional implications and instrumental applications.


2012 ◽  
Vol 132 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Satoshi Maruyama ◽  
Muneki Nakada ◽  
Makoto Mita ◽  
Takuya Takahashi ◽  
Hiroyuki Fujita ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document