Low Cost Solution Based on Software Defined Radio for the RF Exposure Assessment: A Performance Analysis

Author(s):  
Andrei Cristian Bechet ◽  
Robert Helbet ◽  
Iulian Bouleanu ◽  
Annamaria Sarbu ◽  
Simona Miclaus ◽  
...  
2014 ◽  
Vol 687-691 ◽  
pp. 4024-4028
Author(s):  
Si Hao Wang ◽  
Yong Li ◽  
Shen Ke Zhang

A reconfigurable wideband Log-Periodic Dipole Array (LPDA) is here in introduced. Built utilizing low cost it can cover frequencies from 0.2GHz to 2GHz, through the discrete adjustment of its elements. The gain of antenna in a given frequency band of operation can also be changed by the reconfiguration of its elements. The design, construction and testing processes are discussed and a performance analysis is made based on computer simulations. In this paper simulation software HFSS is used to get the optimization design of LPDA, and the simulation results are agree with the experimental dates appropriately.


Author(s):  
Esra Musbah Mohammed Musbah ◽  
Khalid Hamed Bilal ◽  
Amin Babiker A. Nabi Mustafa

VoIP stands for voice over internet protocol. It is one of the most widely used technologies. It enables users to send and transmit media over IP network. The transition from IPv4 to IPv6 provides many benefits for internet IPv6 is more efficient than IPv4. This paper presents a performance analysis of VoIP over WLAN using IPv4 and IPv6 and OPNET software program to simulate the protocols and to investigate the QoS parameters such as jitter, delay variation, packet send, and packet received and throughputs for IP4 and IP6 and compare between them.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4214
Author(s):  
Christopher Zuidema ◽  
Cooper S. Schumacher ◽  
Elena Austin ◽  
Graeme Carvlin ◽  
Timothy V. Larson ◽  
...  

We designed and built a network of monitors for ambient air pollution equipped with low-cost gas sensors to be used to supplement regulatory agency monitoring for exposure assessment within a large epidemiological study. This paper describes the development of a series of hourly and daily field calibration models for Alphasense sensors for carbon monoxide (CO; CO-B4), nitric oxide (NO; NO-B4), nitrogen dioxide (NO2; NO2-B43F), and oxidizing gases (OX-B431)—which refers to ozone (O3) and NO2. The monitor network was deployed in the Puget Sound region of Washington, USA, from May 2017 to March 2019. Monitors were rotated throughout the region, including at two Puget Sound Clean Air Agency monitoring sites for calibration purposes, and over 100 residences, including the homes of epidemiological study participants, with the goal of improving long-term pollutant exposure predictions at participant locations. Calibration models improved when accounting for individual sensor performance, ambient temperature and humidity, and concentrations of co-pollutants as measured by other low-cost sensors in the monitors. Predictions from the final daily models for CO and NO performed the best considering agreement with regulatory monitors in cross-validated root-mean-square error (RMSE) and R2 measures (CO: RMSE = 18 ppb, R2 = 0.97; NO: RMSE = 2 ppb, R2 = 0.97). Performance measures for NO2 and O3 were somewhat lower (NO2: RMSE = 3 ppb, R2 = 0.79; O3: RMSE = 4 ppb, R2 = 0.81). These high levels of calibration performance add confidence that low-cost sensor measurements collected at the homes of epidemiological study participants can be integrated into spatiotemporal models of pollutant concentrations, improving exposure assessment for epidemiological inference.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Yassine Ben-Aboud ◽  
Mounir Ghogho ◽  
Sofie Pollin ◽  
Abdellatif Kobbane.

Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 780
Author(s):  
Kazunori Takahashi ◽  
Takashi Miwa

The paper discusses a way to configure a stepped-frequency continuous wave (SFCW) radar using a low-cost software-defined radio (SDR). The most of high-end SDRs offer multiple transmitter (TX) and receiver (RX) channels, one of which can be used as the reference channel for compensating the initial phases of TX and RX local oscillator (LO) signals. It is same as how commercial vector network analyzers (VNAs) compensate for the LO initial phase. These SDRs can thus acquire phase-coherent in-phase and quadrature (I/Q) data without additional components and an SFCW radar can be easily configured. On the other hand, low-cost SDRs typically have only one transmitter and receiver. Therefore, the LO initial phase has to be compensated and the phases of the received I/Q signals have to be retrieved, preferably without employing an additional receiver and components to retain the system low-cost and simple. The present paper illustrates that the difference between the phases of TX and RX LO signals varies when the LO frequency is changed because of the timing of the commencement of the mixing. The paper then proposes a technique to compensate for the LO initial phases using the internal RF loopback of the transceiver chip and to reconstruct a pulse, which requires two streaming: one for the device under test (DUT) channel and the other for the internal RF loopback channel. The effect of the LO initial phase and the proposed method for the compensation are demonstrated by experiments at a single frequency and sweeping frequency, respectively. The results show that the proposed method can compensate for the LO initial phases and ultra-wideband (UWB) pulses can be reconstructed correctly from the data sampled by a low-cost SDR.


Sign in / Sign up

Export Citation Format

Share Document