Biomedical image denoising using variational mode decomposition

Author(s):  
Salim Lahmiri ◽  
Mounir Boukadoum
2022 ◽  
Vol 17 ◽  
pp. 16-24
Author(s):  
Lalit Mohan Satapathy ◽  
Pranati Das

In the world of digital image processing, image denoising plays a vital role, where the primary objective was to distinguish between a clean and a noisy image. However, it was not a simple task. As a consequence of everyone's understanding of the practical challenge, a variety of methods have been presented during the last few years. Of those, wavelet transformer-based approaches were the most common. But wavelet-based methods have their own limitations in image processing applications like shift sensitivity, poor directionality, and lack of phase information, and they also face difficulties in defining the threshold parameters. As a result, this study provides an image de-noising approach based on Bi-dimensional Empirical Mode Decomposition (BEMD). This project's main purpose is to disintegrate noisy images based on their frequency and construct a hybrid algorithm that uses existing de-noising techniques. This approach decomposes the noisy picture into numerous IMFs with residue, which were subsequently filtered independently based on their specific properties. To quantify the success of the proposed technique, a comprehensive analysis of the experimental results of the benchmark test images was conducted using several performance measurement matrices. The reconstructed image was found to be more accurate and pleasant to the eye, outperforming state-of-the-art denoising approaches in terms of PSNR, MSE, and SSIM.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 1952
Author(s):  
May Phu Paing ◽  
Supan Tungjitkusolmun ◽  
Toan Huy Bui ◽  
Sarinporn Visitsattapongse ◽  
Chuchart Pintavirooj

Automated segmentation methods are critical for early detection, prompt actions, and immediate treatments in reducing disability and death risks of brain infarction. This paper aims to develop a fully automated method to segment the infarct lesions from T1-weighted brain scans. As a key novelty, the proposed method combines variational mode decomposition and deep learning-based segmentation to take advantages of both methods and provide better results. There are three main technical contributions in this paper. First, variational mode decomposition is applied as a pre-processing to discriminate the infarct lesions from unwanted non-infarct tissues. Second, overlapped patches strategy is proposed to reduce the workload of the deep-learning-based segmentation task. Finally, a three-dimensional U-Net model is developed to perform patch-wise segmentation of infarct lesions. A total of 239 brain scans from a public dataset is utilized to develop and evaluate the proposed method. Empirical results reveal that the proposed automated segmentation can provide promising performances with an average dice similarity coefficient (DSC) of 0.6684, intersection over union (IoU) of 0.5022, and average symmetric surface distance (ASSD) of 0.3932, respectively.


Sign in / Sign up

Export Citation Format

Share Document